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Abstract

In this paper we consider a kernel estimator of a density in a convolution model and give a central limit
theorem for its integrated square error (ISE). The kernel estimator is rather classical in minimax theory
when the underlying density is recovered from noisy observations. The kernel is fixed and depends
heavily on the distribution of the noise, supposed entirely known. The bandwidth is not fixed, the results
hold for any sequence of bandwidths decreasing to 0. In particular the central limit theorem holds for
the bandwidth minimizing the mean integrated square error (MISE). Rates of convergence are sensibly
different in the case of regular noise and of super-regular noise. The smoothness of the underlying
unknown density is relevant for the evaluation of the MISE.
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1 Introduction

In this paper we consider the following convolution model:

Zi = Xi + ei ,

where Xi , i = 1, . . . ,n are i.i.d. random variables of unknown densityf which we
need to recover from noisy observationsYi , i = 1, . . . ,n. The noise variablesei are
supposed i.i.d. of known fixed distribution, having a densityfunctionη in L1 andL2 and
a characteristic function (c. f.)Φη.
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10 Central Limit Theorem in the convolution model

We suggest here an estimatorfn of f from noisy observations and study the
asymptotic normality of its integrated square error (ISE)

IS E( fn, f ) =
∫

( fn(x) − f (x))2dx. (1)

Let us suppose for the beginning thatf belongs to a Sobolev classW(r, L) of
densities, i.e.

W(r, L) =

{

f density : f ∈ L2,

∫

|Φ(u)|2|u|2rdu≤ 2πL

}

whereΦ(u) =
∫

exp(iux) f (x)dx denotes its Fourier transform, for some fixedr > 1/2
and a constantL > 0. This roughly means these densities are continuously derivable up
to orderr and theirr-th derivative has boundedL2 norm.

It is known from estimation theory in the convolution model,that the rates and
behaviours of estimators are sensibly different if the characteristic function of the noise
decreases polynomially or exponentially asymptotically.We suppose in a first part that
the noise is “polynomial”, i.e.

|Φη(u)| ∼ |u|−s, as|u| → ∞,

where∼means that the functions behave similarly ands> 0 such thatr > s.
Let us denoteg = f ⋆ η the common density ofYi , i = 1, . . . ,n andΦg

= Φ · Φη its
Fourier transform.

In Section 3, we state our results for different setups. In Section 3.1 we consider
classes of supersmooth densities in association with polynomial noise. We say thatf is
a supersmooth density iff belongs to the class

S(α, r, L) =

{

f density : f ∈ L2,

∫

|Φ(u)|2 exp(2α|u|r)du≤ 2πL

}

,

for someα, r, L > 0. In Section 3.2 we consider Sobolev densities in associationwith
exponentially decreasing noise. Exponential noise means

|Φη(u)| ∼ exp(−γ|u|s), as|u| → ∞,

whereγ, s> 0. We work here with a kernel estimator of the deconvolution density

fn(x) =
1
n

n
∑

i=1

Kn
h (x− Yi) , (2)

whereh > 0 is small,Kn
h denotesKn(·/h)/h and the kernelKn is defined via its Fourier

transform

Φ
Kn

(u) =
Φ

K(u)
Φη(u/h)

, whereΦK(u) = I [|u| ≤ 1]. (3)
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Since pioneering work by Carroll and Hall (1988), the deconvolution density was
already estimated in many setups. We shall cite here only works very much related to
our framework and problems. Such kernel estimates were used on classes similar to the
Sobolev class by Fan (1991a), who computed the rates of convergence of the minimax
L2 risk. Recently wavelet estimators were proven to attain thesame rates on Besov
bodies and these rates are known to be optimal in the minimax approach, see Fan and
Koo (2002).

In the setup of Sobolev densities, Goldenshluger (1999) generalized the minimax
rate for estimatingf with pointwise risk to adaptive (to the Sobolev smoothness) rates
when the noise is either polynomial or exponential (withoutloss of rate in this last
case). Efromovich (1997) computed exact asymptotic risks (pointwise and inL2 norm)
for estimating Sobolev densities in the presence of exponentially decreasing noise.

The kernel estimator in (2) (with adequate bandwidth) was proven to be minimax for
estimating supersmooth densities with polynomial noise inButucea (2004) and with
exponential noise in Butucea and Tsybakov (2003). The same kernel estimator was
proven asymptotically normal when the noise is either polynomial or exponential in
Fan (1991b) and Fan and Liu (1997).

Here we study the asymptotic normality of the ISE in (1) and will discuss several
important applications of results issued from these computations. Such computations
can be found in Hall (1984) for a nonparametric density estimator with direct
observations. His study is a direct application of a CentralLimit Theorem of degenerate
U-statistics of second order. He motivates this by the practical use in simulations of ISE
as a measure of the performance of a density estimator. The main goal is to evaluatecn

andσn such that

σ−1
n (IS E( fn, f ) − cn)→ N(0,1),

whenh → 0 andn → ∞. This subject is strongly related to estimating theL2 norm
of the densityf from noisy observations. Indeed, a natural estimatord2

n of ‖ f ‖22 can
be decomposed such that one of the terms is the degenerate second order U-statisticS2

defined later in (8). For not too smooth densitiesS2 is the dominating term and this gives
the rate of estimating‖ f ‖22. Estimating theL2 norm of a density is furthermore useful
for nonparametric testing in the convolution model. These problems will be soon the
subject of scientific communications.

Another related problem can be further investigated starting with these calculations,
namely that of bandwidth selection for the kernel deconvolution density estimatorfn
in (2), via cross-validation.

2 Results

As a first step it is natural to replacecn by E f [IS E( fn, f )] also denoted byMIS E( fn, f )
for mean integrated square error. From now onPf , E f , andVf denote the probability,
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the expectation and the variance when the true underlying density of the model isf . We
may use constantsc,C,C′, . . . which are different throughout the whole proof.

Note that the density of our observations isg = f ⋆ η. We note next that

IS E( fn, f ) =
∫

( fn(x) − E f [ fn(x)] + E f [ fn(x)] − f (x))2dx

=

∫

( fn(x) − E f [ fn(x)])2dx+
∫

(E f [ fn(x)] − f (x))2dx.

Indeed, the cross product term is null, see Lemma 2. We replacefrom now onE f [ fn(x)]
by its valueKh ⋆ f . Then

MIS E( fn, f ) = E f [IS E( fn, f ))] = E f

[∫

( fn(x) − E f [ fn(x)])2dx

]

+

∫

(E f [ fn(x)]− f (x))2dx

and we write

IS E( fn, f ) − E f [IS E( fn, f ))] = In − E f [In],

whereIn =
∫

( fn(x) − E f [ fn(x)])2dx. Computation ofE f [In] and of the biasB2( fn) =
∫

(E f [ fn(x)] − f (x))2dx is rather classical in minimax theory.

Lemma 1 Let fn(·,Y1, . . . ,Yn) be the kernel density estimator defined in (2) based on
the noisy observations in our convolution model with a bandwidth h→ 0 when n→ ∞.
Then

E f [In] =
1+ o(1)

π(2s+ 1)nh2s+1
.

If the underlying density belongs to a Sobolev smoothness class W(r, L) with r > 1/2,
then

sup
f∈W(r,L)

B2( fn) = sup
f∈W(r,L)

∫

(

E f [ fn(x)] − f (x)
)2

dx= Lh2r
= o(1).

In conclusion, MIS E( fn, f ) converges to0, if and only if nh2s+1→ ∞ when n→ ∞ and
the bandwidth minimizingsupf∈W(r,L) MIS E( fn, f ) is

hMIS E = (Lπ(2s+ 1)n)−
1

2(r+s)+1 .

Proof. We present here only exact calculation ofE f [In], since the remaining results
are obvious or not entirely new. We have

E f [In] =
1
n

∫ (∫

(

Kn
h(x− y) − Kh ⋆ f

)2
(x)dx

)

g(y)dy

=
1
n

(∫ (∫

(

Kn
h(x− y)

)2
dx

)

g(y)dy− ‖Kh ⋆ f ‖22
)

.
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We know that‖Kh ⋆ f ‖22 is equal to‖ f ‖22 plus some estimation bias which tends to 0
whenh→ 0 on a smoothness class like the Sobolev class,W(r, L). So, the main term is
∫

(

∫ (

Kn
h(x− y)

)2
dx
)

g(y)dy. Use Lemma 2:

∫ (∫

(

Kn
h(x− y)

)2
dx

)

g(y)dy =
1
h

∫

(Kn)2
h ⋆ g(x)dx=

1
2πh
Φ

(Kn)2
h⋆g(0)

=
1

2πh
Φ

g(0)Φ(Kn)2
(0) =

1
2πh

∫

Φ
Kn

(−u)ΦKn
(u)du

=
1+ o(1)

π(2s+ 1)h2s+1
.

¤

Remark that in previous equations and in the following proofs, we compute integrals
like
∫

(ΦKn
)2 by actually replacing the c. f. of the noise by|u|−s, its asymptotic ex-

pression. We do this for simplicity, since calculation would actually need splitting
integration domain into|u| ≤ M and M < |u| < 1/h, for some large enough, but
fixed M > 0. If M is large enough,Φη is almost|u|−s and the second integral is always
dominating over the first and gives the order of the whole expression. For a complete
and explicit computation of‖Kn‖22 see Butucea (2004).

Let us look closer atIn:

In =
1
n2

∫















n
∑

i=1

(Kn
h(x− Yi) − Kh ⋆ f (x))















2

dx

=
1
n2

n
∑

i=1

‖Kn
h(· − Yi) − Kh ⋆ f ‖22 +

1
n2

n
∑

i, j=1

〈Kn
h(· − Yi) − Kh ⋆ f ,Kn

h(· − Yj) − Kh ⋆ f 〉,

where‖ · ‖ and〈·, ·〉 denote theL2 norm and the scalar product inL2, respectively. If we
denote by

Ui = Ui(x,h,Yi) = Kn
h(x− Yi) − Kh ⋆ f (x), (4)

these variables are centred and independent. We get

In − E f [In] =
1
n2

n
∑

i=1

(

‖Ui‖22 − E f [‖Ui‖22]
)

+
1
n2

n
∑

i, j=1

〈Ui ,U j〉

= S1 + S2, say.

It is easy to see that variables inS1 and inS2 are uncorrelated:

E f [(‖Uk‖22 − E f [‖Uk‖22])(〈Ui ,U j〉)] = 0,

for all k, i, j = 1, . . . ,n and i , j. It is necessary now to compute the variance of each
sum and compare. What we prove in the following is thatS2 has a larger variance (in
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order) thanS1, for anyh→ 0 andn→ ∞. Then we prove its asymptotic normality and
deduce the asymptotic normality ofIS E( fn, f ) − E f [IS E( fn, f )]. The main difficulty
comes from the fact thatS2 is an U-statistic of order 2 and degenerate. Indeed,

E f [〈Ui ,U j〉/Yj = y j ] = E f [〈Kn
h(· − Yi) − Kh ⋆ f ,Kn

h(· − y j) − Kh ⋆ f 〉]
= 〈E f [K

n
h(· − Yi)] − Kh ⋆ f ,Kn

h(· − y j) − Kh ⋆ f 〉 = 0.

Nevertheless, each term of the sum depends onn and we apply a central limit theorem
for degenerate U-statistics by Hall (1984), which he already applied in his paper for
the ISE of a nonparametric estimator with direct observations. Here, we have noisy
observations and a particular choice of the kernel (motivated by the minimax theory in
this field) giving sensibly different asymptotic behaviours and rates.

Theorem 1 Let fn(·,Y1, . . . ,Yn) be the kernel density estimator defined in (2) based on
the noisy observations in our convolution model and a bandwidth h → 0 such that
nh2s+1→ ∞, when n→ ∞. Then

√

π(4s+ 1)n2h4s+1

2‖g‖22

(

IS E( fn, f ) − E f [IS E( fn, f )]
)

→ N(0,1)

where the convergence is in law when n→ ∞.

Corollary 2 Let fn(·,Y1, . . . ,Yn) be the kernel density estimator in (2) based on the
noisy observations with noise having polynomially decreasing Fourier transform and
a bandwidth h→ 0 such that nh2s+1 → ∞, when n→ ∞. Then In is asymptotically
normally distributed with

E f [In] =
1+ o(1)

π(2s+ 1)nh2s+1
and Vf [In] =

2‖g‖22(1+ o(1))

π(4s+ 1)n2h4s+1
; (5)

if f belongs to the Sobolev class W(r, L), the integrated square error IS E( fn, f ) is
asymptotically normally distributed with

MIS E( fn, f ) ≤ Lh2r
+

1+ o(1)
π(2s+ 1)nh2s+1

and Vf [IS E( fn, f )] =
2‖g‖22(1+ o(1))

π(4s+ 1)n2h4s+1

and the MIS E becomes minimal (and of the order of the minimax L2 risk) for h∗ =
(Lπ(2s+ 1)n)1/(2(r+s)+1)

inf
h>0

sup
f∈W(r,L)

MIS E( fn, f ) = L
1

2(r+s)+1 (π(2s+ 1)n)−
2r

2(r+s)+1 .

Notice that for constructing a confidence interval ofIS E( fn, f ) using its asymptotic
normality, bothMIS E( fn, f ) and Vf [IS E( fn, f )] still depend on unknown quantities.
This was already noted by Hall (1984). The mean ofIS E( fn, f ) depends on unknownf
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via the bias offn: B2( fn) = ‖E f [ fn] − f ‖22 that we can bound from above byLh2r . The
variance ofIS E( fn, f ) depends on unknown‖g‖22. Nevertheless,g is the density of our
observations and can be directly evaluated at a faster rate than f (the same holds for the
other frameworks). Indeed, not only we have direct observations, moreover,g is more
regular thanf due to the convolution (which adds smoothness). The estimation of theL2

norm of a regular enough density, having a smoothness> 1/4, can be done efficiently at
rate 1/

√
n, see e.g. Laurent (1996).

Note also that if we use another bandwidthhsatisfyingnh2r+2s+1→ ∞, whenn→ ∞,
the associatedMIS E is (1+ o(1))/(π(2s+ 1)nh2s+1). Indeed, whatever the bias of the
estimator fn is, it is smaller thanLh2r

= o(1/(nh2s+1)). In this case, the confidence
interval IC1−δ of risk δ > 0, writes

IC1−δ =



















1
π(2s+ 1)nh2s+1

± z1−δ/2
‖g‖2

nh2s+1/2

√

2
π(4s+ 1)



















, (6)

wherezδ is theδ-quantile ofN(0,1), a gaussian law.

Proof. Convergence of S1

S1 =
1
n2

n
∑

i=1

(

‖Ui‖22 − E f [‖Ui‖22]
)

.

Let us compute an upper bound of the variance ofS1. We have

Vf [S1] =
1
n4

n
∑

i=1

E f

[

(

‖Ui‖22 − E f [‖Ui‖22]
)2
]

=
1
n3

(

E f [‖U1‖42] −
(

E f [‖U1‖22]
)2
)

≤
E f [‖U1‖42]

n3
.

In order to evaluate an upper bound of this, we develop the square of sums inE f [‖U1‖42]
and conclude by saying that the dominant term is given by one of positive terms (this
expectation being a positive real number):

E f [‖U1‖42] =
∫ (∫

(

Kn
h(x− y) − Kh ⋆ f (x)

)2
dx

)2

g(y)dy

=

∫ (∫

(

Kn
h(x− y)

)2
dx

)2

g(y)dy

+2‖Kh ⋆ f ‖22
∫ (∫

(

Kn
h(x− y)

)2
dx

)

g(y)dy

+4
∫ (∫

Kn
h(x− y)Kh ⋆ f (x)dx

)2

g(y)dy.
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Note that, by Cauchy-Schwarz and previous evaluations:

∫ (∫

Kn
h(x− y)Kh ⋆ f (x)dx

)2

g(y)dy

≤
∫ (∫

(

Kn
h(x− y)

)2
dx

)1/2

‖Kh ⋆ f ‖2 g(y)dy≤
O(1)
h2s+1

.

It remains to compute an asymptotic upper bound of
∫

(

∫ (

Kn
h(x− y)

)2
dx
)2

g(y)dy. As

previously,

∫ (∫

(

Kn
h(x− y)

)2
dx

)2

g(y)dy≤ C
h2
‖Kn‖42 ≤

c
h4s+2

.

Then, for allh > 0 small such thatnh2s+1→ ∞,

Vf

















√

π(4s+ 1)n2h4s+1

2‖g‖22
S1

















≤ C
nh
= o(1), whenn→ ∞ (7)

and then
√

π(4s+ 1)n2h4s+1

2‖g‖22
S1→P 0, whenn→ ∞.

Convergence of S2:

S2 =
1
n2

n
∑

i, j=1

〈Ui ,U j〉. (8)

The variables inS2 are centred and, moreover,E f [〈Ui ,U j〉〈Uk,Ul〉] = 0 as soon as
(i, j) , (k, l) and (i, j) , (l, k). Then

Vf [S2] =
1
n4

E f



































n
∑

i, j=1

〈Ui ,U j〉

















2
















=
2
n4

n(n− 1)E f [〈U1,U2〉2] =
2+ o(1)

n2
E f [〈U1,U2〉2]

If we develop this, we get

E f [〈U1,U2〉2] = E f [〈Kn
h(x− Y1),K

n
h(x− Y2)〉2] − ‖Kh ⋆ f ‖42.

We use again the fact that‖Kh ⋆ f ‖22 is equal to‖ f ‖22 plus some estimation bias which
tends to 0 whenh→ 0 on the classW(r, L). So, the main term is the first one. Indeed:

E f [〈Kn
h(· − Y1),K

n
h(· − Y2)〉2] =

∫ ∫ (∫

Kn
h(x− u)Kn

h(x− v)dx

)2

g(u)g(v)dudv

=
1
h

∫ ∫

(Mn)2
h(v− u)g(u)g(v)dudv,
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where we putMn(x) =
∫

Kn(z+ x)Kn(z)dz. Note that
∫

(Mn(x))2dx =
1
2π

∫

∣

∣

∣Φ
〈Kn(x+·),Kn(·)〉(u)

∣

∣

∣

2
du=

1
2π

∫

∣

∣

∣Φ
Kn

(u)ΦKn
(−u)
∣

∣

∣

2
du

=
1
2π

∫

|u|≤1

du

|Φη(u/h)|2 |Φη(−u/h)|2
=

1+ o(1)
π(4s+ 1)h4s

.

Since densitiesg are continuous functions, even (r + s− 1/2) - Lipschitz continuous,
see Lemma 3, they are uniformly bounded overf in the Sobolev classW(r, L) with any
noise densityη under our assumptions. Then for any smallǫ > 0, such thatǫ/h → ∞,
whenn→ ∞:

∣

∣

∣

∣

∣

∫ ∫

(Mn)2
h(v− u)g(u)g(v)dudv−

∫

(Mn)2‖g‖22
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫ ∫ (

(Mn)2
h(v− u)g(u) − g(v)

∫

(Mn)2

)

dug(v)dv

∣

∣

∣

∣

∣

∣

≤
∫ ∣

∣

∣

∣

∣

∫

(Mn)2(x)(g(v+ hx) − g(v))dx
∣

∣

∣

∣

∣

g(v)dv

≤
∫

|hx|≤ǫ
(Mn)2(x)|hx|r+s−1/2dx+ 2 sup

f ,η
‖g‖∞

∫

|hx|>ǫ
(Mn)2(x)dx≤ o

(∫

(Mn)2

)

.

This means

E f [〈Kn
h(x− Y1),K

n
h(x− Y2)〉2] =

1+ o(1)
π(4s+ 1)h4s+1

‖g‖22

which implies that

Vf [S2] =
(2+ o(1))‖g‖22
π(4s+ 1)n2h(4s+1)

. (9)

Asymptotic normality of S2. We apply here the following Proposition by
Hall (1984):

Proposition 1 (see Theorem 1, Hall (1984)) Assume Hn(x, y) is a symmetric function
such that E[Hn(X1,X2)/X1] = 0 almost surely and E[H2

n(X1,X2)] < ∞ for each n.
Denote by

Gn(x, y) = E[Hn(X1, x)Hn(X1, y)].

If
(

E[G2
n(X1,X2)] + n−1E[H4

n(X1,X2)]
)

/
(

E[H2
n(X1,X2)]

)2
→ 0, (10)

as n→ ∞, then

Wn ≡
n
∑

i< j=1

Hn(Xi ,X j)

is asymptotically normally distributed with zero mean and variance n2E[H2
n(X1,X2)]/2.
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We apply this result to

n2S2/2 =
n
∑

i< j=1

〈Ui ,U j〉.

We have seen already that this U-statistic is degenerate andthat

E f [〈U1,U2〉2] =
‖g‖22 + o(1)

π(4s+ 1)h4s+1
< ∞.

In order to check (10) we evaluate and bound from aboveE f [G2
n(Y1,Y2)] and

E f [〈U1,U2〉4]. First, if we replaceU1 andU2 and we keep the dominant term in the
expectation:

E f [〈U1,U2〉4] ≤
∫ (∫

1
h2

Kn
(u− y1

h

)

Kn
(u− y2

h

)

)4

g(y1)g(y2)dy1dy2

≤
1
h3

∫

1
h

(

Kn
(

z+
y2 − y1

h

)

Kn(z)dz
)4

g(y1)g(y2)dy1dy2

≤
1
h3

∫

Rn
h(y2 − y1)g(y1)g(y2)dy1dy2,

whereRn(z) = (
∫

Kn(z+ u)Kn(u)du)4
= (Mn(z))4. As in the previous part of this proof,

we need to evaluate
∫

Rn(z)dz=
∫

(Mn)4(z)dz=
1
2π

∫

∣

∣

∣Φ
Mn
⋆ ΦMn

(u)
∣

∣

∣

2
du≤

(∫

∣

∣

∣Φ
Mn

(u)
∣

∣

∣

2
du

)2

≤
c

h8s
.

Thus,

E f [〈U1,U2〉4]/
(

n(E f [〈U1,U2〉2])2
)

≤
c/h8s+3

n/h8s+2
≤

C′

nh
= o(1) (11)

and this proves the first part of (10).
Now, recall (4) and write

Gn(y1, y2) =
∫

〈U1(·,h, y1),U3(·,h, y3)〉〈U2(·,h, y2),U3(·,h, y3)〉g(y3)dy3.

We have

〈U1(·,h, y1),U3(·,h, y3)〉 =
∫

1
h2

Kn
(u− y1

h

)

Kn
(u− y3

h

)

du

−
1
h

∫

Kh ⋆ f (u)
[

Kn
(u− y1

h

)

+ Kn
(u− y3

h

)]

du

+‖Kh ⋆ f ‖22

By changing the variable, the first term on the right-hand sidebecomes

1
h

∫

Kn
(

u+
y3 − y1

h

)

K(u)du= Mn
h(y3 − y1),
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where againMn(z) =
∫

Kn(u + z)Kn(u)du. Then, when we replace this into
E f [G2

n(Y1,Y2)], we keep only the dominant term:

E f [G2
n(Y1,Y2)] ≤

∫ ∫ (∫

Mn
h(y3 − y1)M

n
h(y3 − y2)g(y3)dy3

)2

g(y1)g(y2)dy1dy2

≤
1
h

∫ ∫

1
h

(

Mn
(

z+
y2 − y1

h

)

Mn(z)g(y2 + hz)dz
)2

g(y1)g(y2)dy1dy2

≤ 1
h

∫ ∫

1
h

∫

(Mn)2
(

z+
y2 − y1

h

)

(Mn)2(z)g(y2 + hz)dzg(y1)g(y2)dy1dy2

≤ C
1
h

∫ ∫

Qn
h(y2 − y1)g(y1)g(y2)dy1dy2,

where we used Jensen inequality, the fact that densitiesg are uniformly bounded by a
constantC depending only onr, s, L. We denoted by

Qn(z) = (
∫

(Mn)2(z+ x)(Mn)2(x)dx)2.

Similarly to previous calculation ofE f [〈U1,U2〉2]

∫

Qn(z)dz =
∫ ∫

(Mn)2(z+ x)(Mn)2(x)dxdz=

(∫

(Mn)2(x)dx

)2

≤ C′′

h8s
.

Thus,

E f [G
2
n(Y1,Y2)]/(E f [〈U1,U2〉2])2 ≤ C′′′h = o(1). (12)

Inequalities (11) and (12) imply verification of (10) and the proof of asymptotic
normality. Thus, together with (9), we get the theorem:IS E( fn, f ) − MIS E( fn, f ) is
asymptotically normally distributed with mean 0 and variance 2‖g‖22/(π(4s+1)n2h4s+1).
If we take in consideration Lemma 1, plus simple computations, we get the Corollary.

¤

3 Other frameworks

We study here the same problem in the framework of supersmooth densities observed
with polynomial noise (Section 4.1) and that of Sobolev densities with exponential noise
(Section 4.2). As it is known from deconvolution density estimation, the bandwidth
minimizing MIS E provides much slower rates for smoother noise distribution.
Smoother is the noise, harder is the deconvolution problem and slower is the
convergence rate to the asymptotic gaussian law.
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3.1 Supersmooth densities and polynomial noise

In the previous context, conditionnh2s+1 → ∞ was necessary to ensure consistency of
the MIS E, but we only need the more classical, less restrictive condition nh → ∞ in
order to haveS1 converging in probability to 0 (see (7)) and for the asymptotic normality
of the IS E, see (11) necessary to get (10). The fact thatf was in the Sobolev class
allowed us to evaluate the bias term inMIS E and to minimize overh > 0 theMIS E.
If we consider instead of Sobolev smoothness classes, a classS(α, r, L) of supersmooth
densitiesf as defined in the Introduction. We know (see Butucea (2004)) that

B2( fn) =
∫

(

E f [ fn(x)] − f (x)
)2

du≤ L exp

(

−2α
hr

)

.

Theorem 3 Let fn(·,Y1, . . . ,Yn) be the kernel density estimator in (2) based on noisy
observations with noise having polynomially decreasing Fourier transform and a
bandwidth h→ 0 such that nh2s+1 → ∞, when n→ ∞. Then Theorem 1 holds.
Moreover, In is asymptotically normally distributed with mean and variance given by(5)
in Corollary 2; if f belongs to the class S(α, r, L), the integrated square error IS E( fn, f )
is asymptotically normally distributed with

MIS E( fn, f ) ≤ L exp

(

−2α
hr

)

+
1+ o(1)

π(2s+ 1)nh2s+1
and Vf [IS E( fn, f )] =

2‖g‖22(1+ o(1))

π(4s+ 1)n2h4s+1

and the MIS E becomes minimal for

h∗ =

(

logn
2α
−

2s− r + 1
2αr

log logn

)−1/r

giving

inf
h>0

sup
f∈S(α,r,L)

MIS E( fn, f ) =
1

π(2s+ 1)n

(

logn
2α

)(2s+1)/r

.

The main density being here much smoother than the variance, we can at the same
time choose a bandwidthh that minimizes theMIS E( fn, f ) and makes the bias term
exp(−2α/hr ) negligible. Indeed, consider,

h =

(

logn
2α
−
√

logn

)−1/r

. (13)

Thenh/h∗ → 1, whenn→ ∞,

exp

(

−2α
hr

)

= exp

(

−2α
hr
∗

)

exp

(

−2α
√

logn+
2s+ 1

r
log logn

)

= o

(

exp

(

−2α
hr
∗

))

and thus

MIS E( fn, f ) =
1+ o(1)

π(2s+ 1)nh2s+1
=

1+ o(1)

π(2s+ 1)nh2s+1
∗

and the confidence interval can be written as in (6) for the bandwidth h in (13).
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3.2 Sobolev densities and exponential noise

The situation changes completely if the noise is exponentially smooth. From Butucea
and Tsybakov (2003) we know

E f [In] =
hs−1(1+ o(1))

2πγsn
exp

(

2γ
hs

)

and this has to beo(1) as a necessary condition for theMIS E to be consistent.

Theorem 4 Let fn(·,Y1, . . . ,Yn) be the kernel density estimator defined in (2) based on
noisy observations with noise having exponentially decreasing Fourier transform in our
convolution model and a bandwidth h→ 0 such that hs−1 exp(2γ/hs)/n → 0, when
n→ ∞. Then

√

2πγsn2

hs−1 exp(4γ/hs)‖g‖22

(

IS E( fn, f ) − E f [IS E( fn, f )]
)

→ N(0,1)

where the convergence is in law when n→ ∞. Moreover, In is asymptotically normally
distributed with

E f [In] =
hs−1

2πγsn
e2γ/hs

(1+ o(1)) and Vf [In] =
hs−1‖g‖22
2πγsn2

e4γ/hs
(1+ o(1));

if f belongs to the class W(r, L), the integrated square error IS E( fn, f ) is asymptotically
normally distributed with

MIS E( fn, f ) ≤ Lh2r
+

hs−1

2πγsn
e2γ/hs

(1+o(1)) and Vf [IS E( fn, f )] =
hs−1‖g‖22
2πγsn2

e4γ/hs
(1+o(1))

and the MIS E becomes minimal (and of the order of the minimax L2 risk, see
Efromovich (1997)) for h∗ of order(logn/(2γ))−1/s

inf
h>0

sup
f∈W(r,L)

MIS E( fn, f ) = L

(

logn
2γ

)−2r/s

.

In this case the bias term, the bias termLh2r
∗ is dominating in the expression of

MIS E( fn, f ).

Proof. Indeed, we can see that

Vf [S1] ≤ C
‖Kn‖42
h2n3

≤ C
h2s−2

(2πγs)2n3
exp

(

4γ
hs

)

,

for some constantC > 0, and

Vf [S2] =
hs−1‖g‖22(1+ o(1))

2πγsn2
exp

(

4γ
hs

)

.
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We can see thatVf [S1]/Vf [S2] ≤ hs−1/n = o(1) and thusS2 is still the dominating term
in the weak convergence to the normal law.

Moreover,
∫

(Mn)2
= (1+ o(1))hs exp(4γ/hs)/(4πγs) and finally

(

E[G2
n(X1,X2)] + n−1E[H4

n(X1,X2)]
)

/
(

E[H2
n(X1,X2)]

)2
≤ O(h3) +

O(1)
nh3

= o(1).

By Proposition 1 we deduce the asymptotic normality. ¤

4 Auxiliary results

Lemma 2 Let fn be the kernel estimator defined in (2) with the particular choice of the
kernel and for arbitrary h> 0 small. Then

E f [ fn(x)] = K ⋆ f (x).

Moreover, due to the choice of the kernel the cross term in IS E( fn, f ) is null
∫

(

fn(x) − E f [ fn(x)]
) (

E f [ fn(x)] − f (x)
)

dx= 0.

Proof. For the first part, we use the Fourier inversion formula, the expression of the
Fourier transform of the kernel and the fact thatΦg

= Φ · Φη:

E f [ fn(x)] =
∫

1
h

Kn
( x− y

h

)

g(y)dy=
1
2π

∫

e−ixu
Φ

Kn
(hu)Φg(u)du

=
1
2π

∫

e−ixu
Φ

K(hu)Φ(u)du=
∫

1
h

K
( x− y

h

)

f (y)dy= Kh ⋆ f (x).

Next,
∫

(

fn(x) − E f [ fn(x)]
) (

E f [ fn(x)] − f (x)
)

dx

=

∫

(

fn(x) − E f [ fn(x)]
)

E f [ fn(x)]dx−
∫

(

fn(x) − E f [ fn(x)]
)

f (x)dx. (14)

Now, the first term of the difference, we use again Plancherel formula (saying that
∫

p · q =
∫

Φ
p · Φ

q
/2π for any functionsp andq in L1 andL2):

∫

(

fn(x) − E f [ fn(x)]
)

E f [ fn(x)]dx

=
1
n

n
∑

i=1

∫

(

Kn
h(x− Yi) − Kh ⋆ f

)

Kh ⋆ f (x)dx
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=
1

2πn

n
∑

i=1

∫

e−ixu

(

Φ
K(hu)eiuYi

Φη(u)
− ΦK(hu)Φ(u)

)

ΦK(hu)Φ(u)du

=
1
πn

n
∑

i=1

∫

e−ixu

(

Φ
K(hu)eiuYi

Φη(u)
− ΦK(hu)Φ(u)

)

Φ(u)du

=

∫

(

fn(x) − E f [ fn(x)]
)

f (x)dx,

whereΦK(u) is the complex conjugate ofΦK(u) = I [|u| ≤ 1] and we use the fact that
(ΦK)2

= Φ
K . Then the difference in (14) is null. ¤

Lemma 3 1) If f belongs to a Sobolev class W(r, L) with r > 1/2, then g= f ⋆ η, with
η the density of a polynomial noise, is(r + s− 1/2)- Lipschitz continuous function. If f
is a supersmooth density in S(α, r, L), then g is at least Lipschitz continuous.
2) If f is either Sobolev or supersmooth density then f and g= f ⋆ η are uniformly
bounded densities, whether the noise is polynomial or exponential. That means, there
exists a constant C> 0, depending only on r, s, L, such that

sup
f
‖ f ‖∞ ≤ C and sup

f
‖g‖∞ ≤ C.

3) If the noise is polynomial then the deconvolution kernel defined in(3) has

‖Kn‖22 =
1+ o(1)
π(2s+ 1)h2s

,

if the noise is exponential, then it has

‖Kn‖22 =
hs(1+ o(1))

2πγs
exp

(

2γ
hs

)

.

Proof. 1) If f is in the Sobolev classW(r, L) andη is the density of a polynomial noise,
we have:

|g(x+ y) − g(x)| = 1
2π

∣

∣

∣

∣

∣

∫

(e−iu(x+y) − e−iux)Φg(u)du
∣

∣

∣

∣

∣

≤ 1
2π

∫

|e−iuy − 1|
|u|r+s

|Φ(u)||u|r |Φη(u)||u|sdu

≤
1
2π

(∫

|e−iuy − 1|2

|u|2(r+s)
du
∫

|Φ(u)|2|u|2r |Φη(u)||u|2sdu

)1/2

≤
|y|r+s−1/2

2π

(∫

|e−iv − 1|2

|v|2(r+s)
dv

)1/2 (∫

|u|≤M
|Φ(u)|2|Φη(u)|2|u|2(r+s)du

+

∫

|u|>M
|Φ(u)|2|u|2rdu

)1/2
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and all the integrals are finite, for anyM > 0 large enough but fixed. Then there exists a
finite constantC > 0 that does not depend onx or y, such that

|g(x+ y) − g(x)| ≤ C|y|r+s−1/2.

We omit the similar proofs in the cases where either the noiseis exponential or the
density f is supersmooth.

2) Probability density functionsf in the Sobolev class are such that:

| f (x)| = 1
2π

∣

∣

∣

∣

∣

∫

e−ixu
Φ(u)du

∣

∣

∣

∣

∣

≤ 1
2π

(∫

|Φ(u)|2(1+ |u|2r)du
∫

(1+ |u|2r)−1du

)1/2

,

which is less than some constantC depending only onr andL. Similarly for g.
3) For this we refer to Butucea (2004) and Butucea and Tsybakov(2003). ¤
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Resum

En aquest article considerem un estimador nucli de la densitat en un model de convolució i donem
un teorema central del lı́mit pel seu error quadràtic integrat. L’estimador nucli és força usual en teoria
mı́nimax quan la densitat subjacent es recupera a partir d’observacions amb soroll. El nucli està fixat
i depèn fortament de la distribució de l’error, la qual se suposa totalment coneguda. L’amplada de
banda no està fixada, els resultats es verifiquen per qualsevol seqüència d’amplades decreixents cap
a 0. En particular, es pot aplicar el teorema central del lı́mit per l’amplada de banda que minimitza
l’error quadràtic integrat mitjà. Les velocitats de convergència són força diferents en el cas de sorolls
regulars i de sorolls super-regulars. La suavitat de la densitat subjacent és rellevant en l’avaluació del
l’error quadràtic integrat mitjà.

MSC: 62G05, 62G20

Paraules clau: error quadràtic integrat, estimació no paramètrica de la densitat, model de convolució,
observacions amb soroll, teorema central del lı́mit
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