# Estimation of the noncentrality matrix of a noncentral Wishart distribution with unit scale matrix. A matrix generalization of leung's domination result 

Heinz Neudecker*<br>Cesaro

## Abstract

The main aim is to estimate the noncentrality matrix of a noncentral Wishart distribution. The method used is Leung's but generalized to a matrix loss function. Parallelly Leung's scalar noncentral Wishart identity is generalized to become a matrix identity. The concept of Löwner partial ordering of symmetric matrices is used.

MSC: 62H12, 15A24, 15A45
Keywords: Noncentral Wishart matrix identity, noncentrality matrix, decision-theoretic estimation, matrix loss function, Löwner matrix ordering, Haffians

## 1 Introduction

We consider $S \sim W_{m}\left(n, I_{m}, M^{\prime} M\right)$. Following Leung (1994) we recall that the habitual unbiased estimator of $M^{\prime} M$ is $T:=S-n I_{m}$. Under certain conditions $T_{\alpha}:=T+$ $\alpha(\operatorname{tr} S)^{-1} I_{m}$ dominates $T$ for a suitable choice of $\alpha$, as was shown by Leung, who used the loss function

$$
\lambda\left[\left(M^{\prime} M\right)^{-1}, R\right]:=\operatorname{tr}\left\{\left(M^{\prime} M\right)^{-1} R-I_{m}\right\}^{2} .
$$

He extended work by Perlman \& Rasmussen (1975), Saxena \& Alam (1982), Chow (1987) and Leung \& Muirhead (1987).

[^0]In this article we propose to use a matrix loss function, $\operatorname{viz} L\left[\left(M^{\prime} M\right)^{-1}, R\right]:=$ $\left\{\left(M^{\prime} M\right)^{-1} R-I_{m}\right\}^{\prime}\left\{\left(M^{\prime} M\right)^{-1} R-I_{m}\right\}$ and apply the concept of Löwner partial ordering of symmetric matrices. We shall show that Leung's result still holds approximately, the error term being of order $o\left(n^{-1}\right)$. For accomplishing this we need a matrix version of Leung's Identity for the noncentral Wishart distribution. This will be presented first.

A matrix version of an ancillary lemma by Leung, viz his Lemma 3.1 will next be established. The generalized domination result will then follow straightforwardly.

We shall employ an approximation of $E(\operatorname{tr} S)^{-1} S$, where $E$ is the expectation operator. A lemma on the matrix Haffian $\nabla \varphi F$, where $\varphi$ and $F$ are scalar and matrix functions of $S$, will be proved in Appendix 1. In Appendix 2 we shall prove a lemma on the scalar Haffian $\operatorname{tr} \nabla F_{2} A F_{1}$, when $F_{1}$ and $F_{2}$ are matrix functions of $S$ and $A$ is a constant matrix.

## 2 A matrix version of Leung's identity for the noncentral Wishart distribution

We quote Leung's Theorem 2.1, where without loss of generality we take $h=1, h$ being a scalar function of $S$ in Leung's work:

$$
\begin{equation*}
E \operatorname{tr} \Sigma^{-1} F=2 E \operatorname{tr} \nabla F+(n-m-1) E \operatorname{tr} S^{-1} F+E_{1} \operatorname{tr} \Sigma^{-1} M^{\prime} M S^{-1} F, \tag{1}
\end{equation*}
$$

where $S \sim W_{m}\left(n, \Sigma, \Sigma^{-1} M^{\prime} M\right), E$ denotes the expectation with respect to this distribution, $E_{1}$ denotes the expectation with respect to the distribution $W_{m}(n+m+1$, $\left.\Sigma, \Sigma^{-1} M^{\prime} M\right), F=F(S)$ and $n>m+1$. The matrices $S, \Sigma, F$ and $\nabla$ are square of dimension $m$, whereas $M$ has dimension $n \times m$. It is assumed that $M$ has full column rank. Further $\nabla F$ is the matrix Haffian as denoted by Neudecker (2000b). Inspired by Haff (1981), who did it for the central Wishart distribution, we shall establish a matrix version of (1).

## Theorem 1

$$
\begin{align*}
E F_{1} \Sigma^{-1} F_{2} & =2 E F_{1} \nabla F_{2}+2\left(E F_{2}^{\prime} \nabla F_{1}^{\prime}\right)^{\prime}+  \tag{2}\\
& +(n-m-1) E F_{1} S^{-1} F_{2}+E_{1} F_{1} \Sigma^{-1} M^{\prime} M S^{-1} F_{2},
\end{align*}
$$

for $F_{1}$ and $F_{2}$ satisfying the conditions of Lemma 5 .
Proof. Take $F=F_{2} e_{j} e_{i}^{\prime} F_{1}$, with unit vectors $e_{i}$ and $e_{j}$. We then use the identity:

$$
\operatorname{tr} \nabla F_{2} A F_{1}=\operatorname{tr}\left(\nabla F_{2}\right) A F_{1}+\operatorname{tr}\left(\nabla F_{1}^{\prime}\right) A^{\prime} F_{2}^{\prime},
$$

with constant $A$. For a proof see Lemma 5 .

Taking $A=e_{j} e_{i}^{\prime}$ we get

$$
\begin{aligned}
E \operatorname{tr} \Sigma^{-1} F_{2} e_{j} e_{i}^{\prime} F_{1} & =2 E \operatorname{tr}\left(\nabla F_{2}\right) e_{j} e_{i}^{\prime} F_{1}+2 E \operatorname{tr}\left(\nabla F_{1}^{\prime}\right) e_{i} e_{j}^{\prime} F_{2}^{\prime}+ \\
& +(n-m-1) \operatorname{tr} E S^{-1} F_{2} e_{j} e_{i}^{\prime} F_{1}+E_{1} \operatorname{tr} \Sigma^{-1} M^{\prime} M S^{-1} F_{2} e_{j} e_{i}^{\prime} F_{1}
\end{aligned}
$$

or equivalently

$$
\begin{aligned}
\left(E F_{1} \Sigma^{-1} F_{2}\right)_{i j} & =2\left(E F_{1} \nabla F_{2}\right)_{i j}+2\left(E F_{2}^{\prime} \nabla F_{1}^{\prime}\right)_{j i}+ \\
& +(n-m-1)\left(E F_{1} S^{-1} F_{2}\right)_{i j}+\left(E_{1} F_{1} \Sigma^{-1} M^{\prime} M S^{-1} F_{2}\right)_{i j}
\end{aligned}
$$

Note: It was assumed that (1) holds for all $F=F_{2} e_{j} e_{i}^{\prime} F_{1}$, which puts stronger conditions on the input matrix than was necessary for (1). By choosing $F_{1}=I_{m}$ and taking traces we derive (1) from (2).

For discussion of the central Wishart case we refer to Haff (1981).

## 3 A matrix version of Leung's lemma 3.1

## Lemma 2

$$
\begin{aligned}
& E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1} S\left(M^{\prime} M\right)^{-1}<n E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-2}- \\
& \quad-2(n-4) E(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-2}+E_{1}(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1}- \\
& \quad-2 E_{1}(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-1}
\end{aligned}
$$

where $S \sim W_{m}\left(n, I_{m}, M^{\prime} M\right)$ and $M^{\prime} M$ is assumed to be nonsingular. The inequality $A<B$, for symmetric $A$ and $B$, stands for the Löwner ordering meaning that $B-A$ is positive definite.

Proof. Take $F_{1}=(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1}$ and $F_{2}=S\left(M^{\prime} M\right)^{-1}$. By Theorem 1 (with $\left.\Sigma=I_{m}\right)$ :

$$
\begin{aligned}
E & (\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1} S\left(M^{\prime} M\right)^{-1}=2 E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1} \nabla S\left(M^{\prime} M\right)^{-1}+ \\
& +2\left\{E\left(M^{\prime} M\right)^{-1} S \nabla(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1}\right\}^{\prime}+ \\
& +(n-m-1) E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-2}+E_{1}(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1}= \\
& =(m+1) E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-2}-2 E(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-1} S\left(M^{\prime} M\right)^{-1}+ \\
& +(n-m-1) E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-2}+E_{1}(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1}=
\end{aligned}
$$

$$
\begin{align*}
& =n E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-2}-2 E(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-1} S\left(M^{\prime} M\right)^{-1}+ \\
& +E_{1}(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1} \tag{i}
\end{align*}
$$

Further

$$
\begin{aligned}
& E(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-1} S\left(M^{\prime} M\right)^{-1}=2 E(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-1} \nabla S\left(M^{\prime} M\right)^{-1}+ \\
& \quad+2\left\{E\left(M^{\prime} M\right)^{-1} S \nabla(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-1}\right\}^{\prime}+(n-m-1) E(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-2}+ \\
& \quad+E_{1}(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-1}
\end{aligned}
$$

where we applied Theorem 1 (with $\Sigma=I_{m}$ ) using $F_{1}=(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-1}$ and $F_{2}=$ $S\left(M^{\prime} M\right)^{-1}$. Proceeding as before we get

$$
\begin{aligned}
& E(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-1} S\left(M^{\prime} M\right)^{-1}=(m+1) E(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-2}- \\
& \quad-4 E(\operatorname{tr} S)^{-3}\left(M^{\prime} M\right)^{-1} S\left(M^{\prime} M\right)^{-1}+(n-m-1) E(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-2}+ \\
& \quad+E_{1}(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-1}=n E(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-2}- \\
& \quad-4 E(\operatorname{tr} S)^{-3}\left(M^{\prime} M\right)^{-1} S\left(M^{\prime} M\right)^{-1}+E_{1}(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-1} .
\end{aligned}
$$

We use the Löwner ordering $S<(\operatorname{tr} S) I_{m}$, which yields $\left(M^{\prime} M\right)^{-1} S\left(M^{\prime} M\right)^{-1}<$ $(\operatorname{tr} S)\left(M^{\prime} M\right)^{-2}$. Hence we get

$$
(n-4) E(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-2}+E_{1}(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-1}<E(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-1} S\left(M^{\prime} M\right)^{-1} .
$$

Insertion in (i) finally yields

$$
\begin{gathered}
E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1} S\left(M^{\prime} M\right)^{-1}<n E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-2}-2(n-4) E(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-2} \\
-2 E_{1}(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-1}+E_{1}(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1}
\end{gathered}
$$

## Notes:

1. Nonsingularity of $M^{\prime} M$ is not trivial. A case of singularity is $M^{\prime}=\mu l^{\prime}$, where the $n$ means are proportional.
2. Leung assumes $n>4$. There is no need for it.
3. Taking traces in Lemma 2 yields Leung's Lemma 3.1.

## 4 A matrix version of Leung's domination result

We shall now prove the main result of this paper.

## Theorem 3

$$
E L\left[\left(M^{\prime} M\right)^{-1}, T\right]>E L\left[\left(M^{\prime} M\right)^{-1}, T_{\alpha}\right]
$$

for $0<\alpha \leqslant 4(n-4)$, where

$$
\begin{gathered}
L\left[\left(M^{\prime} M\right)^{-1}, R\right]:=\left\{\left(M^{\prime} M\right)^{-1} R-I_{m}\right\}^{\prime}\left\{\left(M^{\prime} M\right)^{-1} R-I_{m}\right\}, \\
T:=S-n I_{m} \quad \text { and } \quad T_{\alpha}:=T+\alpha(t r S)^{-1} I_{m} .
\end{gathered}
$$

Proof.

$$
\begin{aligned}
& L\left[\left(M^{\prime} M\right)^{-1}, T\right]-L\left[\left(M^{\prime} M\right)^{-1}, T_{\alpha}\right]=\left\{\left(M^{\prime} M\right)^{-1} T-I_{m}\right\}^{\prime}\left\{\left(M^{\prime} M\right)^{-1} T-I_{m}\right\}- \\
& \quad-\left\{\left(M^{\prime} M\right)^{-1} T_{\alpha}-I_{m}\right\}^{\prime}\left\{\left(M^{\prime} M\right)^{-1} T_{\alpha}-I_{m}\right\}=2 n \alpha(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-2}- \\
& \quad-\alpha^{2}(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-2}-\alpha(\operatorname{tr} S)^{-1} S\left(M^{\prime} M\right)^{-2}-\alpha(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-2} S+ \\
& \quad+2 \alpha(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1} .
\end{aligned}
$$

Its expected value is

$$
\begin{aligned}
& 2 n \alpha E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-2}-\alpha^{2} E(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-2}-\alpha E(\operatorname{tr} S)^{-1} S\left(M^{\prime} M\right)^{-2}- \\
& \quad-\alpha E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-2} S+2 \alpha E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1}> \\
& \quad>2 \alpha E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1} S\left(M^{\prime} M\right)^{-1}+ \\
& \quad+4 \alpha(n-4) E(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-2}-2 \alpha E_{1}(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1}+4 \alpha E_{1}(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-1}- \\
& \quad-\alpha^{2} E(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-2}-\alpha E(\operatorname{tr} S)^{-1} S\left(M^{\prime} M\right)^{-2}-\alpha E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-2} S+ \\
& \quad+2 \alpha E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1} \\
& \quad=2 \alpha E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1} S\left(M^{\prime} M\right)^{-1}+\alpha[4(n-4)-\alpha] E(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-2}+ \\
& \quad+2 \alpha\left\{E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1}-E_{1}(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1}\right\}+ \\
& \quad+4 \alpha E_{1}(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-1}-\alpha E(\operatorname{tr} S)^{-1} S\left(M^{\prime} M\right)^{-2}-\alpha E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-2} S,
\end{aligned}
$$

$$
\text { by Lemma } 2 .
$$

We approximate $E(\operatorname{tr} S)^{-1} S$ by

$$
\begin{aligned}
& \mu\left(n I_{m}+M^{\prime} M\right)-2 \mu^{2}\left(n I_{m}+2 M^{\prime} M\right)+ \\
& \quad+2 \mu^{3}\left(m n+2 \operatorname{tr} M^{\prime} M\right)\left(n I_{m}+M^{\prime} M\right),
\end{aligned}
$$

with $\mu^{-1}:=\operatorname{tr}\left(n I_{m}+M^{\prime} M\right)$, the remainder being of order $o\left(n^{-1}\right)$.

Insertion yields

$$
\begin{aligned}
& 2 \alpha E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1} S\left(M^{\prime} M\right)^{-1}-\alpha E(\operatorname{tr} S)^{-1} S\left(M^{\prime} M\right)^{-2}- \\
& \quad-\alpha E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-2} S=O+o\left(n^{-1}\right)
\end{aligned}
$$

Hence to the order of approximation

$$
\begin{aligned}
& E L\left[\left(M^{\prime} M\right)^{-1}, T\right]-E L\left[\left(M^{\prime} M\right)^{-1}, T_{\alpha}\right]>\alpha[4(n-4)-\alpha] E(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-2}+ \\
& \quad+2 \alpha\left[E(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1}-E_{1}(\operatorname{tr} S)^{-1}\left(M^{\prime} M\right)^{-1}\right]+4 \alpha E_{1}(\operatorname{tr} S)^{-2}\left(M^{\prime} M\right)^{-1}>O
\end{aligned}
$$

as $E(\operatorname{tr} S)^{-1} \geqslant E_{1}(\operatorname{tr} S)^{-1}$.
For the auxiliary inequality see Leung (1994, p. 112).

## Appendix 1: a lemma on the matrix Haffian $\nabla \varphi F$

## Lemma 4

$$
\nabla \varphi F=\varphi \nabla F+\frac{\partial \varphi}{\partial X} F
$$

where $\varphi$ is a scalar function of the symmetric matrix variable $X$ and $F$ is a matrix function thereof. Further

$$
\frac{\partial \varphi}{\partial X}:=\frac{1}{2} \sum_{i j} \frac{\partial \varphi}{\partial x_{i j}}\left(E_{i j}+E_{j i}\right), \quad \text { where } E_{i j}:=e_{i} e_{j}^{\prime}
$$

Proof.

$$
\begin{gathered}
(\nabla \varphi F)_{i k}=\sum_{j} d_{i j}(\varphi F)_{j k}=\sum_{j} d_{i j} \varphi f_{j k}=\frac{1}{2} \sum_{j}\left(1+\delta_{i j}\right) \frac{\partial \varphi f_{j k}}{\partial x_{i j}}= \\
=\frac{\partial \varphi f_{i k}}{\partial x_{i i}}+\frac{1}{2} \sum_{j \neq i} \frac{\partial \varphi f_{j k}}{\partial x_{i j}}=\varphi\left(\frac{\partial f_{i k}}{\partial x_{i i}}+\frac{1}{2} \sum_{j \neq i} \frac{\partial f_{j k}}{\partial x_{i j}}\right)+\left(\frac{\partial \varphi}{\partial x_{i i}}\right) f_{i k}+ \\
+\frac{1}{2} \sum_{j \neq i} \frac{\partial \varphi}{\partial x_{i j}} f_{j k}=\varphi(\nabla F)_{i k}+\left(\frac{\partial \varphi}{\partial X}\right)_{i .} F_{. k}, \quad \text { hence } \\
\nabla \varphi F=\varphi \nabla F+\frac{\partial \varphi}{\partial X} F .
\end{gathered}
$$

Here $f_{j k}$ and $(F)_{j k}$ are the $j k^{\text {th }}$ element of $F, F_{i .}$ is the $i^{\text {th }}$ row of $F$ and $F_{. j}$ is the $k^{\text {th }}$ column of $F$.

For more details see Neudecker (2000b).

## Appendix 2: a lemma on the scalar Haffian $\operatorname{tr} \boldsymbol{\nabla} F_{2} A F_{1}$

## Lemma 5

$$
\operatorname{tr} \nabla F_{2} A F_{1}=\operatorname{tr}\left(\nabla F_{2}\right) A F_{1}+\operatorname{tr}\left(\nabla F_{1}^{\prime}\right) A^{\prime} F_{2}^{\prime}
$$

where $F_{2}$ and $F_{1}$ are functions of the symmetric matrix variable $X$ and $A$ is a constant matrix.

Each $F$ satisfies $F=\sum_{k} \varphi_{k} C_{k}$ or $d F=\sum_{l} P_{l}(d X) Q_{l}^{\prime}$ with constant $C_{k}, P_{l}$ and $Q_{l}$.
We consider three cases. The first comprises $F_{1}=\varphi C$ and $d F_{2}=P(d X) Q^{\prime}$, the second comprises $F_{2}=\varphi C$ and $d F_{1}=P(d X) Q^{\prime}$, the third comprises $d F_{1}=P(d X) Q^{\prime}$ and $d F_{2}=R(d X) T^{\prime}$. The fourth case with $F_{1}=\varphi_{1} C_{1}$ and $F_{2}=\varphi_{2} C_{2}$ follows easily. Without loss of generality the summation signs were dropped.

Proof.
Case 1. We have $d F_{1}=(d \varphi) C$, hence by Lemma $4 \nabla F_{1}^{\prime}=\frac{\partial \varphi}{\partial X} C^{\prime}$. Further

$$
\begin{aligned}
d\left(F_{2} A F_{1}\right) & =\left(d F_{2}\right) A F_{1}+F_{2} A d F_{1} \\
& =P(d X) Q^{\prime} A F_{1}+(d \varphi) F_{2} A C
\end{aligned}
$$

which implies

$$
\begin{aligned}
\nabla F_{2} A F_{1} & =\frac{1}{2} P^{\prime} Q^{\prime} A F_{1}+\frac{1}{2}(\operatorname{tr} P) Q^{\prime} A F_{1}+\frac{\partial \varphi}{\partial X} F_{2} A C \\
\operatorname{tr} \nabla F_{2} A F_{1} & =\frac{1}{2} \operatorname{tr} P^{\prime} Q^{\prime} A F_{1}+\frac{1}{2}(\operatorname{tr} P) \operatorname{tr} Q^{\prime} A F_{1}+\operatorname{tr} \frac{\partial \varphi}{\partial X} F_{2} A C \\
\left(\nabla F_{2}\right) A F_{1} & =\frac{1}{2} P^{\prime} Q^{\prime} A F_{1}+\frac{1}{2}(\operatorname{tr} P) Q^{\prime} A F_{1}, \\
\operatorname{tr}\left(\nabla F_{2}\right) A F_{1} & =\frac{1}{2} \operatorname{tr} P^{\prime} Q^{\prime} A F_{1}+\frac{1}{2}(\operatorname{tr} P) \operatorname{tr} Q^{\prime} A F_{1} ; \\
\left(\nabla F_{1}^{\prime}\right) A^{\prime} F_{2}^{\prime} & =\frac{\partial \varphi}{\partial X} C^{\prime} A^{\prime} F_{2}^{\prime}, \\
\operatorname{tr}\left(\nabla F_{1}^{\prime}\right) A^{\prime} F_{2}^{\prime} & =\operatorname{tr} \frac{\partial \varphi}{\partial X} C^{\prime} A^{\prime} F_{2}^{\prime}=\operatorname{tr} \frac{\partial \varphi}{\partial X} F_{2} A C .
\end{aligned}
$$

This yields the result.
Case 2. We replace $F_{1}$ by $F_{2}^{\prime}, A$ by $A^{\prime}$ and $F_{2}$ by $F_{1}^{\prime}$ in the first result. This leads to

$$
\operatorname{tr} \nabla F_{1}^{\prime} A^{\prime} F_{2}^{\prime}=\operatorname{tr}\left(\nabla F_{1}^{\prime}\right) A^{\prime} F_{2}^{\prime}+\operatorname{tr}\left(\nabla F_{2}\right) A F_{1}
$$

Using $\operatorname{tr} \nabla F^{\prime}=\operatorname{tr} \nabla F$ we get

$$
\operatorname{tr} \nabla F_{2} A F_{1}=\operatorname{tr}\left(\nabla F_{1}^{\prime}\right) A^{\prime} F_{2}^{\prime}+\operatorname{tr}\left(\nabla F_{2}\right) A F_{1} .
$$

Case 3. Now $d F_{1}=P(d X) Q^{\prime}$ and $d F_{2}=R(d X) T^{\prime}$. Then

$$
\begin{aligned}
& 2 \nabla F_{1}=P^{\prime} Q^{\prime}+(\operatorname{tr} P) Q^{\prime} \\
& 2 \nabla F_{2}=R^{\prime} T^{\prime}+(\operatorname{tr} R) T^{\prime} \\
& 2 \nabla F_{1}^{\prime}=Q^{\prime} P^{\prime}+(\operatorname{tr} Q) P^{\prime}
\end{aligned}
$$

by the Theorem in Neudecker (2000b).
Further

$$
\begin{aligned}
d F_{2} A F_{1} & =\left(d F_{2}\right) A F_{1}+F_{2} A d F_{1}, \\
& =R(d X) T^{\prime} A F_{1}+F_{2} A P(d X) Q^{\prime},
\end{aligned}
$$

which implies

$$
\begin{aligned}
2 \nabla F_{2} A F_{1}= & R^{\prime} T^{\prime} A F_{1}+P^{\prime} A^{\prime} F_{2}^{\prime} Q^{\prime}+ \\
& +(\operatorname{tr} R) T^{\prime} A F_{1}+\left(\operatorname{tr} F_{2} A P\right) Q^{\prime} \\
= & 2\left(\nabla F_{2}\right) A F_{1}+P^{\prime} A^{\prime} F_{2}^{\prime} Q^{\prime}+\left(\operatorname{tr} F_{2} A P\right) Q^{\prime}
\end{aligned}
$$

and hence

$$
\begin{aligned}
2 \operatorname{tr} \nabla F_{2} A F_{1} & =2 \operatorname{tr}\left(\nabla F_{2}\right) A F_{1}+\operatorname{tr}\left[Q^{\prime} P^{\prime}+(\operatorname{tr} Q) P^{\prime}\right] A^{\prime} F_{2}^{\prime} \\
& =2 \operatorname{tr}\left(\nabla F_{2}\right) A F_{1}+2 \operatorname{tr}\left(\nabla F_{1}^{\prime}\right) A^{\prime} F_{2}^{\prime}
\end{aligned}
$$

Note: For an introduction to the scalar Haffian see Neudecker (2000a).

## 5 References

Chow, M. S. (1987). A complete class theorem for estimating a noncentrality parameter. Ann. Statist., 15, 800-4.
Haff, L. R. (1981). Further identities for the Wishart distribution with applications in regression. Canadian J. Statist., 215-24.

Leung, P. L. (1994). An identity for the noncentral Wishart distribution with application. J. Multivariate Anal., 48, 107-14.
Leung, P. L. \& Muirhead, R. J. (1987). Estimation of parameter matrices and eigenvalues in MANOVA and canonical correlation analysis. Ann. Statist., 15, 1651-66.
Neudecker, H. (2000a). A note on the scalar Haffian. Qüestiió, 24(2), 243-9.

Neudecker, H. (2000b). A note on the matrix Haffian. Qüestiió, 24(3), 419-24.
Perlman, M. D. \& Rasmussen, U. A. (1975). Some remarks on estimating a noncentrality parameter. Comm. Statist., 4, 455-68.
Saxena, K. M. L. \& Alam, K. (1982). Estimation of the noncentrality parameter of a chi-squared distribution. Ann. Statist., 10, 1012-6.


[^0]:    * Address for correspondence: Oosterstraat, 13. 1741 GH Schagen. The Netherlands. Postal address: NL 1741 GH 13. E-mail: heinz@fee.uva.nl

    Received: May 2001
    Accepted: October 2003

