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Abstract

Several aspects of the analysis of two successive survival times are considered. All the analyses take
into account the dependent censoring on the second time induced by the first. Three nonparametric
methods are described, implemented and applied to the data coming from a multicentre clinical trial
for HIV-infected patients. Visser’s and Wang and Wells methods propose an estimator for the bivariate
survival function while Gómez and Serrat’s method presents a conditional approach for the second
time given the first. The three approaches are compared and discussed at the end of the paper.
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1 Introduction

The survival experience of a population often involves two times of interest. The
estimation of their joint survivor function is of intrinsic interest since it is useful in
predicting the joint survival experience, in estimating the degree of dependence, in
model building and testing and in strengthening marginal analysis.
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These two survival times of interest could be naturally paired, for instance, in twin
studies when analyzing time to death of each sibling, in oncology studies when the
interest is the time to cancer detection in the left and right breast, in ophthalmology when
recording the time to severe visual loss on the left and right eyes. In these cases, several
possibly dependent failure processes act concurrently, and henceforth, they ought to be
modelled jointly.

In many other situations there is a natural ordering of the times of occurrence of
events. For instance, in any clinical study, time to diagnosis precedes time to start
treatment which in turns precedes times to cure. In AIDS studies, time to HIV infection
precedes the time to AIDS diagnosis, which in turn precedes the time to death due
to AIDS. In food science studies, when referring to climacteric fruits, the time to
maturation precedes the time to senescentia.

In univariate survival studies, right censoring usually precludes the complete
observation of the time to event variable. When we have two survival times of interest
the censoring mechanism could either be the same for both variables or act differently
on each one. For instance, when analyzing the joint behaviour of the ages of cancer
diagnosis in each breast the censoring – due to loss of follow-up or end of study –
acts simultaneously on each breast. However, when studying the population of twins
who have suffered a heart attack, the follow-up time, and hence the censoring, could
be independent for each twin. When one event precedes the second, the censoring
mechanism acting on the second and subsequent times will depend not only on the
total time of follow-up but also in the value of the first and preceding times. When
this situation arises the methods to estimate the joint survival, or functions of the joint,
have to handle the special case of dependent and informative censoring induced by the
previous failure times.

The motivation of the paper comes from the Tibet (Guided-Treatment Interruption
Benefit) study. Tibet is a multicentre, open label clinical trial with blinded and
centralized randomization conducted to investigate the safety and clinical benefits of
an intermittent antiretroviral therapy guided by CD4+ T-cell counts and plasma HIV-1
RNA in patients with chronic HIV-1 infection with more than 500 CD4+ counts/mm3

and undetectable HIV-1 RNA. Patients were randomized to follow either the intermittent
guided therapy which is described below or to continue with their prior HAART (Highly
Active Antiretroviral Therapy). Details of the study are described in Ruiz et al (2007).

In this work we restrict our attention to the interruption group in which the patients
interrupt therapy until CD4+ counts reach values equal or inferior to 350 cells/mm3,
plasma viral load increases to 100000 copies/ml or a severe acute retroviral syndrome
takes place or an AIDS-defining illness occurs. If any of these events occurs, the prior
HAART is reinitiated and maintained until CD4+ counts increases to 500 cells/mm3 or
more and viral load reaches 80 copies/ml, at which time HAART is again discontinued
as previously described.
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This intermittent therapeutic strategy process defines, for each patient, a sequence
of alternative stages without HAART (OFF) and with HAART (ON). Various lifetime
variables can be defined within this process, for instance, T1 is the first time OFF, that is,
the time (in weeks) from randomization (and therefore interruption of HAART therapy)
to first reinitiation of treatment, T2 is the first time ON, that is the time from the first
treatment reinitiation until the next interruption, T3 is the second time OFF, that is, the
number of weeks from the second HAART interruption to the second reinitiation of
treatment, and so on.

Apart from the number of scientific and clinical questions that such an study poses,
there are also a number of relevant statistical issues which arise due to this particular data
set. In particular, the dependent censoring mechanism that affects T2, and subsequent
times, as a consequence of having an administrative censoring time C, invalidates the
standard methods of survival analysis for right-censored data and requires alternative
approaches.

We now review the most relevant papers concerning the estimation of the bivariate
survival function as well as the estimation of the conditional survival function from pairs
of random variables which might be right-censored. Campbell (1981) and Campbell
and Földes (1982) propose several nonparametric estimators for the bivariate survival
function in the presence of independent pairs of censoring variables that are independent
of the failure times. Their main idea is based on the factorization of the bivariate
distribution function as a product of the distribution function for the bivariate vector
of interest and the distribution function for the censoring variables. These estimators
are shown to be strongly uniform consistent at a rate of convergence equal to that
of the empirical distribution function. All the estimators they propose, however, are
not legitimate survival functions since they are not necessarily monotone increasing in
both coordinates. Tsai, Leurgans and Crowley (1986) propose a family of closed form
estimators that are always survival functions based on a decomposition of the bivariate
survival in terms of identifiable survival and subsurvival functions. Their estimators
are fairly complicated and have a rate of convergence slower than Campbell and
Földes. Burke (1988) proposes an estimator based on the representation of the bivariate
distribution function as the convolution of the subdistribution function, which can be
naturally estimated by the observed data, and the inverse of the bivariate distribution
function for the censoring times. Burke’s approach only uses the information provided
by the uncensored observations, throwing away the relevant information of censored
data points. Dabrowska (1988) proposes an estimator for the bivariate survival function
based on an empirical estimator for the bivariate cumulative hazard. This estimator
is almost surely consistent and weakly convergent. Unfortunately, its computation is
quite complicated and the covariance function of these estimators cannot be estimated
analytically. More details can be found in Gómez et al. (2004).

Visser (1996), Wang and Wells (1998) and Gómez, Serrat and Ruiz (2007) approach
different aspects of the nonparametric bivariate survival estimation problem. Visser
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derives the nonparametric maximum likelihood estimate for the conditional hazard of
T2 given a fixed value of T1 under the assumption that the two durations are discrete.
Wang and Wells present an estimator for the cumulative conditional hazard of T2 given
T1 > t1 following Nelson-Aalen’s construction of the cumulative hazard estimator but
where each observation has been weighted using the information on the first duration
to unbias the effect of dependent censoring. Due to the limited applicability of Visser’s
estimator, since lifetime data are genuinely continuous, and the lack of interpretability
of Wang and Wells’s parameter of interest in the case of two ordered times T1 and T2

where the observation of the second time, T2, is conditioned on the observation of the
first time, Gómez, Serrat and Ruiz (2007) propose a weighted conditional estimation for
the survival of T2 on a given category of T1.

We introduce the notation and assumptions for the rest of the paper in Section 2 and
develop the methods of Visser, Gómez and Serrat and Wang and Wells in Sections 3, 4
and 5 respectively. Each of these three sections starts with a description of the method,
continues with some software considerations and ends with a specific analysis of the
Tibet clinical trial. The three approaches are compared and discussed at the end of the
paper.

2 Notation

Assume that T1 and T2 represent two consecutive duration variables corresponding to
two different events at times T1 and T1 + T2, respectively, which are measured from the
start of the follow-up. The follow-up time is subject to independent right censoring by
C. Note that T1, T2 and T1 + T2 are independent of C. However T2, which is subject
to right censoring by C − T1, is not independent of C − T1 unless T1 is independent
of T2. In this situation, we cannot use conventional survival methods for independent or
noninformative censorship models. Whenever the censoring random variable for a given
time depends on other random times we say that we are in the framework of a dependent
censoring mechanism.

Define the marginal and bivariate survival functions for (T1,T2) as S 1(t1) = Pr{T1 >

t1} and S 12(t1, t2) = Pr{T1 > t1,T2 > t2}. Denote by G(t) = Pr{C > t} the survival
function corresponding to the total time of follow-up C. If τC = sup{t : G(t) > 0} is the
maximum follow-up time, the bivariate survival function, S 12(t1, t2), is only estimable
for t1+ t2 ≤ τC. This restriction is analogous to the non-estimability of the Kaplan-Meier
estimator beyond those values larger than the total follow-up time. It follows as well that
the marginal distributions for T2 cannot be estimated by the Kaplan-Meier method. Note
that if T1 and T2 are positively correlated, even under independent censoring, persons
with long T1’s are more likely to have long T2’s and hence more likely to be censored.
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For a given individual we observe a vector (Y1,Y2,D1,D2) where for every j = 1, 2,
Yj = min{T j,Cj}, Dj = 1{T j ≤ Cj}, C1 = C, C2 = (C − T1)1{T1 ≤ C}.

Note that when

i. D1 = 0 = D2: the two durations are right-censored and thus Y1 = C, Y2 = 0 and no
information about T2 is available

ii. D1 = 1,D2 = 0, T1 is observed while T2 is right-censored by C−T1, which implies
that T2 is right-censored by a dependent variable if T1 and T2 are correlated.

iii. D1 = 1,D2 = 1, T1 and T2 are observed.

Our estimation problem is to be based on a random sample {(T1i,T2i,Ci), i = 1, . . . , n}
of (T1,T2,C) from which the observed sample is S = {(Y1i,Y2i,D1i,D2i), i = 1, . . . , n}.
We also consider S∗, a subset of S, consisting of those observations for which T1 is
observed, that is, S∗ = {(Y1i,Y2i,D1i,D2i) ∈ S|D1i = 1, i = 1, . . . , n} ⊂ S.

Note that when D1i = 0, no crude information about T2i is available. However, these
subjects provide information about T1, which is supposed to be dependent on T2. Thus,
these missing data ({i : D1i = 0}), are not at random because the probability of being
observed for T2 depends on T1. As a consequence, inferences for T2 cannot be only
based on the subset S∗, and we will have to use these partially observed individuals to
infer about the law of T2.

3 Visser’s method. A discrete approach

3.1 Introduction to the methodology

Visser (1996) proposes a nonparametric estimator for the bivariate survival function
when the two duration variables are always observed in a particular order and the
censoring mechanism acts on their sum.

Visser starts assuming that T1,T2 and C are discrete random variables taking values
in {0, 1, 2, . . . ,K}, and therefore Y1,Y2, defined in Section 2 as Yj = min{T j,Cj}, j = 1, 2,
are discrete as well. Due to the fact that the random variables T1,T2 and C are supposed
to be discrete and take a finite number of values, Visser defines the corresponding
survival distributions at each time t as the probability of being greater or equal than
t as follows

S T1 ,T2
(k, l) = Pr{T1 ≥ k,T2 ≥ l}

S T1
(k) = Pr{T1 ≥ k}
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λT1
(k) = Pr{T1 = k|T1 ≥ k}

G(k) = Pr{C ≥ k}.

Visser factorizes S T1 ,T2
(k, l) as the product of the conditional and the marginal as

follows,

S T1 ,T2
(k, l) = S T1

(k)S T2 |T1
(l|k) (1)

On the other hand, the product expression of the survival functions in terms of the hazard
functions allows to write for k, l = 1, 2, . . . ,K:

S T1
(k) = (1 − λT1

(0)) . . . (1 − λT1
(k − 1)) (2)

S T2 |T1=k(l) = Pr{T2 ≥ l|T1 = k} = (1 − λT2 |T1=k(0)) . . . (1 − λT2 |T1=k(l − 1)) (3)

where λT2 |T1=k(l) = Pr{T2 = l|T1 = k,T2 ≥ l}.
Remark as well that S T2 |T1

(l|k) can be written as follows:

S T2 |T1
(l|k) = Pr{T2 ≥ l|T1 ≥ k} = Pr{T2 ≥ l,T1 ≥ k}

Pr{T1 ≥ k}
= (S T1

(k))−1
K∑
j=k

S T2 |T1= j(l)(S T1
( j) − S T1

( j + 1)) (4)

Equalities (1) and (4) imply that in order to estimate S T1 ,T2
(k, l) we only need to

estimate S T1
(k) and S T2 |T1= j(l). The estimation of S T1

(k) is straightforward through the
Kaplan-Meier estimator.

Denote by n1k, n2kl, n3kl the following counting processes: n1k =
∑n

i=1 1{ Y1i = k, δi =
1}, n2kl =

∑n
i=1 1{Y1i = k,Y2i = l, δi = 2} and n3kl =

∑n
i=1 1{Y1i = k,Y2i = l, δi = 3}. That is,

n1k counts the number of censored individuals at k months (for these individuals T1 > k
and T2 is not defined), n2kl counts the number of individuals whose first duration is equal
to k months and who are censored after k + l months (for these individuals T1 = k and
T2 > l) and n3kl counts the number of subjects with a first duration equal to k months and
a second duration equal to l months (for these individuals T1 = k and T2 = l). Denote as
well nk· =

∑K
l=1(n2kl + n3kl) which counts the total number of individuals whose T1 = k

irrespective of their status on T2.
Visser proves (see Appendix for more details) that the nonparametric MLE for λT1

(k)
is given by

λ̂T1
(k) =

∑n
i=1 1{Y1i = k, δi ≥ 2}∑n

i=1 1{Y1i ≥ k} =

∑K
l=1(n2kl + n3kl)

n1k +
∑K

l=1(n2kl + n3kl)
(5)
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which yields the discrete time Kaplan-Meier estimator for S T1
(k) after replacing it in (2).

On the other hand, the nonparametric MLE for λT2 |T1=k(l) is given by

λ̂T2 |T1=k(l) =
n∑

i=1

1{Y1i = k,Y2i = l, δi = 3}∑n
i=1 1{Y1i = k,Y2i ≥ l} . (6)

Replacing λ̂T2 |T1=k(l) in (3) provides the MLE for S T2 |T1=k(l), which in turn can be replaced
in (4) to obtain an estimator for S T2 |T1

(l|k). Finally, everything could be replaced in (1) to
get the bivariate nonparametric estimator for S T1 ,T2

(k, l).
Visser proves that both estimators, λ̂T1

(k) and λ̂T2 |T1=k(l), are consistent asymptotically
normal after normalizing by

√
n, and asymptotically independent. These facts, together

with the δ method, imply that
√

n(Ŝ T1 ,T2
(k, l) − S T1 ,T2

(k, l)) is asymptotically normal,
mean zero and with an asymptotic variance that can be estimated replacing the unknown
functions by their estimators.

The survival function G of the censoring variable appears in the expression for the
variances. It may be estimated by the product-limit method.

3.2 Implementation

We have implemented in S-PLUS a function bwv21 that computes the conditional
survival for T2, given a value T1 = t1, according to expression (3). The function uses
as parameters the observed values of T1 and T2, as well as, the corresponding censoring
indicators (D1 and D2).

After estimating the conditional survival we can compute the joint survival S T1 ,T2
(k, l)

in (1), by using the function c2jv that implements the expression given in (4).
All the S-PLUS functions that we have implemented are available at the web page

of the GRASS group at http://www-eio06.upc.es/grass.

3.3 TIBET project: A discrete time analysis

In the Tibet clinical trial, one hundred HIV-patients were recruited between May 2001
and January 2002 and randomly assigned to interrupt HAART. The interim closing date
for the study was July 15, 2004.

Figure 1 shows the empirical survival estimator corresponding to the follow-up time
of each patient. Based on this estimation, the probability of being followed 96 weeks or
more is 93%, the median follow-up time is 130 weeks, the third quartile is 146 weeks
and the maximum follow-up time being 188 weeks. Furthermore, the effective minimum
follow-up has been 96 weeks.
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Follow-up time (min = 8 weeks, max = 188 weeks)

Follow-up Time at c weeks

G
(c

) 
=

 P
ro

b(
C

>
c)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: Survival estimator for the time to follow-up.

3.3.1 Conditional estimation of the first time ON given the first time OFF

Using the function bwv21 we have obtained the results in Table 1. This table illustrates
the finite grid of 30 observed times for T1 by 23 observed times for T2, and the
corresponding estimation of S T2 |T1=t1 (t2) for each pair (t1, t2) of the grid. For instance, the
median time of being with treatment among those who have been 8 weeks interrupted
is approximately 23 weeks. Note, however, that although the median and even the third
quartile are estimable for t1 = 8, for longer interrupted times the estimation is either not
possible or quite rough.

As a matter of fact, Visser’s discrete method does not provide efficient estimates of
the conditional survival function due to the drastic reduction of the sample size. This
drawback is due to the fact that for a fixed time T1 = t1 the sample size is not large
enough to make inferences on T2|T1 = t1. In particular, the sample size is dramatically
small for t1 > 40. Furthermore, the small number of events for T2 makes the estimation
of S T2 |T1=t1 (.) quite hopeless. This fact is still more problematic for high values of t1,
where the proportion of censoring for T2 is higher (in some cases 100%).

3.3.2 Joint distribution estimation

Based on the results in Table 1 we have computed the joint survival S T1 ,T2
(k, l) in (1).

Table 2 shows the results of this estimation for a selection of times in T1 and T2.
It is important to remark that expression in (4) can not be directly computed from

the data because, as we have seen in Table 2, S T2 |T1= j(l) is not estimable for some pairs
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Table 2: Estimates for some selected times of the joint survival of (T1,T2) using Visser’s approach.

t1 = 6 12 24 48 72 96 120

t2 = 12 0.878 0.678 0.598 0.460 0.377 0.325 0.312

24 0.428 0.315 0.241 0.164 0.080 0.054 0.054

36 0.206 0.198 0.155 0.116 0.033 0.022 0.022

48 0.100 0.098 0.084 0.062 0.010 – –

60 0.078 0.077 0.064 0.042 – – –

100 0.016 0.015 0.015 – – – –

( j, l). As a first approximation we have omitted the contribution of these terms in those
pairs in which the estimation of the conditional survival has not been possible. This fact
produces two important drawbacks: on one hand, the method is not efficient and, on the
other hand, in general there is an underestimation of the corresponding bivariate survival
distribution.

4 Gómez and Serrat’s method. A stratified approach

Driven by the Tibet clinical trial where it is of special interest to characterize the number
of weeks on treatment that a patient needs in order to recover their virological and
immunological levels given that he/she has spent a certain number of weeks without
treatment, we propose an estimator for the survival of T2 on a given category of T1.

Let 0 < τ1 < τ2 < . . . < τM be the M times of interest for a particular study. For
convenience define τ0 = 0 and consider τM+1 as an arbitrary value larger than τM.
Let T ∗1 be a discrete version of T1 defined as follows:

T ∗1 =

{
τk if τk−1 < T1 ≤ τk k = 1, · · · ,M
τM+1 if T1 > τM.

Note that the election of the representative of each class is not relevant for the results.
Denote the conditional cumulative hazard function for T2 given T ∗1 = τk by ΛT2 |T ∗1=τk(db)
and the conditional survival function for T2 given T ∗1 = τk by

S T2 |T ∗1=τk(v) = Pr(T2 > v|T ∗1 = τk) = Pr(T2 > v|τk−1 < T1 ≤ τk)

for k = 1, . . . ,M and v > 0. The factorization of the survival function in terms of the
conditional cumulative hazard is straightforward:

S T2 |T ∗1=τk(v) =
∏
b≤v
{1 − ΛT2 |T ∗1=τk(db)}. (7)
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When estimating the survival of T2 given a certain category of T1 we could
legitimately apply the conditional Kaplan-Meier if censoring for T2 would be non
informative, that is, if individuals with different T1 values, within a given category,
had the same chances of being at risk for different values of T2. However, this might
not be the case if the categories are quite wide and, in this case, we will have to take
into account the effect that the dependent censoring caused by T1, within each strata, is
producing on T2.

In the next subsection we show how would affect the dependent censoring on the
estimations and we propose how to adjust the Kaplan-Meier survival estimates for T2 on
each strata to unbias the effect produced by T1 and we propose a weighted conditional
estimator for S T2 |T ∗1=τk(t2) = Pr(T2 > t2|τk−1 < T1 ≤ τk), adjusted by the dependent
censoring.

4.1 Weighted conditional methodology

Denote by RT2
(b|τk) the risk set of T2 at time b given T ∗1 = τk. Under the dependent

censoring structure the risk set RT2
(b|τk) for estimating ΛT2 |T ∗1=τk(db) may not be

homogeneous, as is shown in Theorem 1.

Theorem 1 The probability of being at risk at time b for the second duration T2 for an
individual with first duration equal to T1 = t1i depends on G(t1i + b).

Proof: An observation i with the first duration T1 = t1i affects the probability of the
corresponding T2i being included in RT2

(b|τk), as we see in the following expression:

Pr{i ∈ RT2
(b|τk)} = Pr{Y1i ∈ t1i, τk−1 < t1i ≤ τk,D1i = 1,Y2i ≥ b}

= Pr{T1 ∈ t1i, τk−1 < t1i ≤ τk,T2 ≥ b}G(t1i + b).

where T1 ∈ t1i is the abbreviation of T1 ∈ (t1i, t1i + Δ) as Δ→ 0. �

Therefore, the conditional Kaplan-Meier produces biased results because the value
of t1i affects the probability of the corresponding T2i being included in RT2

(b|τk). To
adjust this heterogeneity, one can weight each observation in RT2

(b|τk) by an estimate of
the reciprocal of G(t1i + b).

We define the conditional cumulative hazard estimator as follows:

Λ̂T2 |T ∗1=τk(Δb) =

∑
i∈RT2 (b|τk) 1{Y2i = b,D2i = 1}/Ĝ(t1i + b)∑

i∈RT2 (b|τk) 1{Y2i ≥ b}/Ĝ(t1i + b)

=

∑n
i=1 1{τk−1 < Y1i ≤ τk,D1i = 1,Y2i = b,D2i = 1}/Ĝ(Y1i + b)∑n

i=1 1{τk−1 < Y1i ≤ τk,D1i = 1,Y2i ≥ b}/Ĝ(Y1i + b)
(8)



86 Nonparametric bivariate estimation for successive survival times

for every b such that max1≤i≤n Y1i + b < τ̂C where τ̂C = sup{t : Ĝ(t) > 0} is the observed
maximum follow-up time and where Ĝ(·) is the empirical survival computed from the
follow-up times.

This estimator has a potential problem when Ĝ(·) = 0. The convention 0/0 = 0 is
used to avoid the misdefinition. However, in many clinical trials, and in particular in
the one that motivated our work, the follow-up time C is a continuous variable which
is observed for all the individuals and hence Ĝ(·) � 0, except for the largest follow-up
time.

A nonparametric estimator, Ŝ T2 |T ∗1=τk(v), for the conditional survival function is
obtained by plugging (8) into (7) as follows:

Ŝ T2 |T ∗1=τk(v) =
∏
b≤v
{1 − Λ̂T2 |T ∗1=τk(db)}. (9)

Asymptotic properties of Λ̂T2 |T ∗1=τk(Δb) and Ŝ T2 |T ∗1=τk(v), as well as related issues to the
estimation of the variance of Ŝ T2 |T ∗1=τk(v) via a bootstrapping methodology can be found
in Gómez et al. (2004 and 2007). A simulation study illustrating its good behaviour
when the sample size is moderate is included in Gómez et al. (2007).

4.2 Implementation

We have implemented in S-PLUS the inverse probability of censoring weighted (IPCW)
conditional methodology introduced in the previous section. The main function in the
library is called bwwce21 and its syntax is the following:

bwwce21(vartimes1,varcens1,vartimes2,varcens2,breaks,wmet,vtfw,vcfw)

where

vartimes1 = first time variable (T1 by default),

varcens1 = censoring indicator for the first time (D1 by default),

vartimes2 = second time variable (T2 by default),

varcens2 = censoring indicator for the second time (D2 by default),

breaks = partition values ({12, 24, 48, 96} by default),

wmet = weighting method for the dependent censoring

(0=no weights, 1=follow-up -default-, 2=T1+T2, 3=T1+T2+T3),

vtfw = follow-up time variable (TFW by default),

vcfw = censoring indicator for the follow-up time (DFW by default).

Function bwwce21 allows to reproduce the conditional Kaplan-Meier estimator
attending the categories in the variable T1, by setting no weights (wmet=0) in the call.
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4.3 TIBET project: Conditional estimation of the first time ON given the first
time OFF

We illustrate the conditional estimator, given in Subsection 4.1, for the estimation of the
survival of the first time with treatment conditioned to the first time without treatment.
Clinicians were very interested in the survival pattern of the first time with treatment, T2,
for patients who had been short, medium and long times without treatment, T1. Based
on these considerations they fixed the times of interest for the conditional analysis in
τ1 = 12 (one trimester), τ2 = 48 (one year) and τ3 = 96 (two years), and according to
this partition we have the following three categories in T1: T1 ≤ 12, 12 < T1 ≤ 48 and
48 < T1 ≤ 96. Among the 100 patients, there are 31 with T1 right-censored (D1 = 0).
Among the 69 patients with T1 observed (D1 = 1), there are 15 patients with T2 right–
censored (D2 = 0) and 51 patients with T1 and T2 observed (D1 = D2 = 1).

In Figure 1 we observed that, except for a few number of subjects, there is a common
minimum follow-up of 96 weeks. As a consequence, if we are estimating the survival at
time T2 = v in the category T ∗1 , the standard Kaplan-Meier estimator would be enough
if v + T ∗1 ≤ 96 (for example, for v ≤ 84 weeks when T ∗1 = 12 or for v ≤ 48 weeks when
T ∗1 = 48) and, on the other hand, we will appreciate the correction of the bias due to the
dependent censoring when v + T ∗1 ≥ 96 by using the proposed weighted methodology.

Table 3: Estimates and standard errors (computed using bootstrap) for some selected times of the
conditional survival of T2 given the following three categories: T1: T1 ≤ 12, 12 < T1 ≤ 48 and 48 < T1 ≤ 96

t2 (0,12] (12,48] (48,96]

12 0.964 (0.0328) 0.954 (0.0463) 1 (0)

24 0.464 (0.1273) 0.727 (0.1048) 0.802 (0.1265)

36 0.143 (0.0695) 0.410 (0.1028) 0.571 (0.1938)

48 0.107 (0.0588) 0.228 (0.0889) 0.386 (0.1674)

60 0.071 (0.0539) 0.228 (0.0885) 0.298 (0.1566)

100 0.071 (0.0511) 0.228 (0.0881) 0 (0.1889)

Table 3 provides the estimates and standard errors for some selected times of
the conditional survival of T2 given categories in T1. The standard errors have been
computed using bootstrap. Based on these results (see Table 4) we estimate that while a
patient who needs treatment quite fast (0 < T1 ≤ 12) will be as well fast in recovering
his/her CD4 and viral load levels (median equals to 23), those patients which are able
to stay a bit longer without treatment (12 < T1 ≤ 48) take longer time to recover
levels (median equals to 30) and those patients which are able to stay much longer
without treatment (48 < T1 ≤ 96) take much longer time to recover levels (median
equals to 42). This behaviour can be explained by introducing as a covariate the cause
of treatment reinitiation (plasma viral load > 100000 copies/ml and/or CD4+ counts ≤
350 cells/mm3). Those patients that reinitiate treatment because viral load has become
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Table 4: Description of T2 given categories of T1

T1 ≤ 12 12 < T1 ≤ 48 48 < T1 ≤ 96

Size 29 22 13

Events 26 17 8

1st Q 20 23 35

Median 23 30 42

3rd Q 30 45 80

higher than 100000 copies/ml, do so quite fast and their immunological system has not
had time to be deteriorated. Since treatment is design to control viral replications these
patients need shorter times to reach an undetectable viral load and still CD4 > 500. On
the other hand, although some patients are able to stay without treatment long enough
because they can keep viral load below 100000, the immunological system is slowly,
but constantly, deteriorating. As a consequence, once they start treatment they need a
longer period to recover the immunological level.

We present in Figure 2 the standard conditional Kaplan-Meier estimator together
with the proposed weighted estimator of the conditional survival function Ŝ T2 |T ∗1=τk(v)
given in (9), for each of these categories. Note that in the first two categories both
estimators coincide due to the long common minimum follow-up as we have previously
noticed. Figure 2 also illustrates that the time that a patient needs to recover their
immunological and virological levels depends on the time that he/she has been without
treatment, as we have already observed in the previous paragraph. We can also clearly
see a different behaviour between the survival of the times on treatment for patients that

Conditional Survival of T2 given categories in T1
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Figure 2: Plots of the conditional survival function of T2 given T1 in the following three categories: T1 ≤ 12,
12 < T1 ≤ 48 and 48 < T1 ≤ 96 for both the standard conditional Kaplan-Meier and the proposed weighted
estimator given in (9).
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stay without treatment less than 12 weeks as opposed to those that stay without treatment
more than 48 weeks.

5 Wang and Wells’ method. A continuous approach

5.1 Wang and Wells’ estimator

Wang and Wells (1998) propose a path-dependent (nonparametric) estimate for the joint
survival function of two duration variables.

According to the notation introduced in Section 2, let the observed sample be
S = {(Y1i,Y2i,D1i,D2i), i = 1, . . . , n}, and S∗ = {(Y1i,Y2i,D1i = 1,D2i), i = 1, . . . , n}
the subset of S consisting of those observations for which T1 is observed. Wang and
Wells consider the following path-dependent decomposition

S 12(t1, t2) = Pr{T2 > t2|T1 > t1}Pr{T1 > t1}
=
∏
v≤t2
{1 − ΛT2 |T1>t1 (dv)}S 1(t1) (10)

where ΛT2 |T1>t1 (dv) is the cumulative conditional hazard of T2 given T1 > t1. Wang and
Wells propose to estimate S 12(t1, t2) via estimable components for ΛT2 |T1>t1 (dv) and for
S 1(t1) and to plug them into (10). The estimation of the marginal S 1(t1) is accomplished
using the Kaplan-Meier estimator based on the observables (Y1i,D1i) (i = 1, . . . , n).

The estimator for ΛT2 |T1>t1 (dv) extends Campbell and Földes estimator so that
dependent censoring is taking into account. First note that if we let RT2

(v|t1) be the risk
set of T2 at time v given T1 > t1, if v > 0 then RT2

(v|t1) ⊂ S∗. An observation i with the
first duration T1 = t1i affects the probability of the corresponding T2i being included in
RT2

(v|t1) as we see in the following expression

Pr{i ∈ RT2
(v|t1)} = Pr{Y1i ∈ t1i, t1i > t1,D1i = 1,Y2i ≥ v}

= Pr{T1 ∈ t1i, t1i > t1,T2 ≥ v}G(t1i + v).

Hence they adjust this heterogeneity by weighting each observation in RT2
(v|t1) by an

estimate of 1/G(t1i + v).
Wang and Wells’ estimator for ΛT2 |T1>t1 (dv) can be expressed as follows:

Λ̂WW
T2 |T1>t1

(Δv) =

∑
i∈RT2 (v|t1) 1{Y2i = v,D2i = 1}/Ĝ(t1i + v)∑

i∈RT2 (v|t1) 1{Y2i ≥ v}/Ĝ(t1i + v)
(11)

=

∑n
i=1 1{Y1i > t1,D1i = 1,Y2i = v,D2i = 1}/Ĝ(Y1i + v)∑n

i=1 1{Y1i > t1,D1i = 1,Y2i ≥ v}/Ĝ(Y1i + v)
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where Ĝ(·) is an appropriate estimator of G(·) computed from the follow-up data. For
example, Ĝ(·) can be the Kaplan-Meier estimator of G(·) computed from the data
(Y1i + Y2i, 1 − D1iD2i) (i = 1, . . . , n).

Wang and Wells’ estimator for S T2 |T1>t1 (t2) = Pr{T2 > t2|T1 > t1} is given by plugging
Λ̂WW

T2 |T1>t1
(Δv) into (10):

Ŝ WW
T2 |T1>t1

(t2) =
∏
v≤t2
{1 − Λ̂WW

T2 |T1>t1
(dv)}. (12)

and the corresponding estimator for S 12(t1, t2) is given by

Ŝ 12(t1, t2) = Ŝ WW
T2 |T1>t1

(t2)Ŝ 1(t1) (13)

Their estimator uses the information on the first duration to weight each observation
to unbias the effect of dependent censoring. This estimator has a potential problem with
the existence of Ŝ 12(t1, t2) when Ĝ(·) = 0. If the largest value of Y1i + Y2i, say c(n), is
censored (D1iD2i = 0), then the largest observation of the censoring variables is observed
(1 − D1iD2i = 1) and hence Ĝ(c(n)) = 0. However, in this case the numerator in (11) is
also 0 and the convention 0/0 = 0 can be used. Note that the marginal survivor function
can be estimated by Ŝ 2(t2) = Ŝ 12(0, t2).

Wang and Wells show that Ŝ 12(t1, t2) converges in probability to S 12(t1, t2) and claim
that the limit distribution of

√
n(Ŝ 12(t1, t2)− S 12(t1, t2)) converges weakly to a zero-mean

Gaussian process, but the variance of the limiting process is quite complex and is not
given.

5.2 Joint survival considerations for (T1, T2)

The bivariate estimator is useful in predicting the joint survival experience, in estimating
the degree of dependence, in model building and testing and in strengthening marginal
analysis. Furthermore, it is a necessary step if we want to compare Ŝ T2 |T ∗1=τk(v), given in
(9), to the estimator of S T2 |T ∗1=τk(v) obtained from Wang and Wells’ approach.

An estimator, Ŝ WW
12 (t1, t2), for the bivariate survival function of (T1,T2) is obtained

plugging Ŝ 1(t) and Ŝ WW
T2 |T1>t1

(t2), given in (12), into (13). This estimator suffers from two
drawbacks: it is not a legitimate survival function and is dependent on the selected
path and ordering of the components. We propose to isotonize Ŝ WW

12 so that the survival
function is monotone in both components. Denote by Ŝ isot

12 the isotonic version of Ŝ WW
12 .

5.3 Related issues

On one hand, by using the joint survival Ŝ isot
12 introduced in the previous subsection, we

can also derive an estimator for the survival of T2 conditioned on the categories in T1
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just defining Ŝ isot
T2 |T ∗1=τk(v) as follows:

Ŝ isot
T2 |T ∗1=τk(v) =

Ŝ isot
12 (τk−1, v) − Ŝ isot

12 (τk, v)

Ŝ 1(τk−1) − Ŝ 1(τk)
, (14)

This is an alternative estimator for S T2 |T ∗1=τk(v).
On the other hand, when the investigator is interested in the bivariate survival

distribution in some prefixed intervals of time (for instance, we might be interested
in the survival behaviour for every year) the estimation of the following joint function
fT ∗1 ,T2

(τk, v) = Pr(T ∗1 = τk,T2 > v) is particularly appealing. fT ∗1 ,T2
(τk, v) can be factorized

following the path-dependent decomposition: fT ∗1 ,T2
(τk, v) = Pr{T2 > v|T ∗1 = τk} · Pr{T ∗1 =

τk} = S T2 |T ∗1=τk(v) · Pr{T ∗1 = τk}.
As a consequence, fT ∗1 ,T2

(τk, v) is estimated straightforwardly using the nonparametric
estimation of S T2 |T ∗1=τk(v) provided in (9) and from which we know asymptotic properties,

and an estimator, P̂r{T ∗1 = τk}, for Pr{T ∗1 = τk}. To estimate Pr{T ∗1 = τk} we simply
estimate the marginal survival function of T1, S 1(τk), using the Kaplan-Meier estimator,
Ŝ 1(τk), and replace accordingly, that is, P̂r{T ∗1 = τk} = Ŝ 1(τk−1) − Ŝ 1(τk).

5.4 Implementation

In a similar way that for the weighted conditional estimator in Section 4 we
implemented in S-PLUS the function bwww21 to estimate the joint survival distribution
of (T1,T2) according to the Wang and Wells estimator in (13). The basic syntax
of bwww21 is: bwww21(vartimes1, varcens1, vartimes2, varcens2, wmet,
vtfw, vcfw) where the parameters for the function are the same as the ones described
for the bwwce21 function in Subsection 4.2.

Specific computations for Λ̂WW
T2 |T1>t1

(dv) in (12) have been implemented in the
function lww21. The function bwww21 also uses the function isoton that performs the
isotonization of a matrix so that the corresponding survival function is monotone in both
components. It is important to note that, in order to avoid successive steps isotonizing by
rows and columns alternatively, with non-unique results, our algorithm applies in one
single-step an upper-left triangular minimization (see the corresponding code below).
Related functions are is.isoton and isotonv that have been implemented to check if
a matrix is isotonic and to isotonize a vector, respectively.

isoton <- function(mat) {

n.r <- dim(mat)[1]

n.c <- dim(mat)[2]

mati <- mat

for(j in 2:n.c) mati[1,j] <- min(mati[1, c(j-1,j)])

for(i in 2:n.r) mati[i,1] <- min(mati[c(i-1, i),1])
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for(j in 2:n.c) for(i in 2:n.r)

mati[i,j] <- min(mati[i-1,j], mati[i,j], mati[i,j-1])

mati

}

Finally, the conditional survival Ŝ isot
T2 |T ∗1 in (14) has been implemented in the function

j2c.

5.5 TIBET project: Joint survival estimation

In the same way that in Section 4 the follow-up time variable, TFW, is the information
on the censoring that we have for each patient.

TIBET project: Wang & Wells Conditional Survival of T2 given T1 > tau_k 
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Figure 3: Plots of the conditional survival function of T2 given categories in T1. T1 represents the number
of weeks without treatment and is splitted into three categories: T1 > 12, T1 > 24 and T1 > 48. Each curve
represents the survival function of the first time with treatment on each of the categories.

Figure 3 illustrates Wang and Wells estimator Ŝ WW
T2 |T1>t1

(t2) given in (12) for the
following three categories defined by T1: T1 > 12, T1 > 24 and T1 > 48. We see from
these curves that patients who stay without treatment more than 48 weeks, will stay with
treatment longer times than those patients who stayed OFF more than 24 weeks.

In Table 5 we illustrate the isotonic joint survival estimator for Ŝ 12(t1, t2), Ŝ isot
12 ,

proposed in Subsection 5.2. We can see that the joint estimation it is not feasible for
those pairs (t1, t2) with no events for T2, with T2 > t2, in the category T1 > t1.
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Table 5: Estimates for some selected times of the joint survival of (T1,T2) using Wang and Wells method.

t1 = 0 6 12 24 48 72 96 120

t2 = 12 0.972 0.926 0.694 0.613 0.489 0.405 0.353 0.312

24 0.691 0.666 0.586 0.527 0.448 0.360 0.353 0.312

36 0.394 0.394 0.394 0.360 0.355 0.207 0.207 –

48 0.266 0.266 0.265 0.256 0.256 – – –

60 0.219 0.219 0.219 0.219 0.202 – – –

100 0.050 0.050 0.036 0.033 0.000 – – –

With respect to isotonizing the resulting joint survival in (13), note that we did not
need to isotonize in more than 60% of the points. On the other hand, the resulting
differences in the rest of the points have −0.157, −0.025 and −0.010 as quartiles.

Table 6 gives the estimates for the conditional survival of T2 given categories in
T1, Ŝ isot

T2 |T ∗1=τk(v), derived from Wang and Wells method. In more than 70% of the points
isotonization has not been necessary.

Table 6: Estimates for some selected times of the conditional survival of T2 given categories in T1 after
estimating the joint survival distribution of (T1,T2) using Wang and Wells method.

t2 (0,12] (12,48] (48,96]

12 0.960 0.930 1

24 0.360 0.627 0.697

36 0.000 0.130 0.697

48 0.000 0.005 –

60 0.000 0.005 –

100 0.000 0.005 –

After comparing with the weighted conditional estimator that we have proposed in
the Section 4 (see Table 3), we can see that the conditional estimator derived from Wang
and Wells approach underestimates, in general, the corresponding survival.

6 Discussion

In this paper we have illustrated three different approaches to analyze two successive
survival times. The main difficulty in this type of study is the presence of the dependent
censoring induced by the potential relationship between both times of interest. All
the approaches consider the estimation either of the joint distribution of (T1,T2) or
the conditional distribution of T2 given T1. The main difference between the proposed
methods is on the conditioning strategy and the way of considering the correction of the
bias due to the dependent censoring.
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Visser’s method is based on the direct estimation of the conditional survival given an
specific value for T1, and it does not correct for the effect of the dependent censoring.
As we mentioned in Section 3 the main restriction of this methodology is that it needs
an important initial sample in order to obtain, after conditioning, a sample size that is
large enough to estimate efficiently the conditional survival.

On the other hand, the weighted conditional estimation proposed by Gómez and
Serrat provides an unbiased estimator for the conditional survival function for the second
survival time given the categories in the first survival time. The main interest of this
approach is that it takes into account the heterogeneity due to the dependent censoring
by using all the information provided by T1 to weight the observed data. In this sense,
Gómez and Serrat’s estimator is a good alternative to Visser’s method because it does
not need a discretization of the time variables and it allows to perform the estimation
when the sample size is not very large. We remark here that although our parameter of
interest is based on the categories of a first survival time, we use the continuous survival
times, t1i, without discretizing them, to contribute to the inverse weight, G(t1i + b)−1, and
furthermore we do not need to discretize the second survival time T2.

Concerning Wang and Wells’ estimator, it is important to remark that the
conditioning part is based on the subsets T1 > t1 and that the methodology corrects
for the dependent censoring. However, the resulting estimator for the joint survival is
not isotonic and, as a consequence, it is not a proper distribution. Hence the derivation
of other functions of the bivariate survival distribution, for instance the conditional
survival in the Tibet clinical trial, is questionable. As we noticed in Subsection 5.2 an
alternative could be to isotonize the resulting estimates, however, as we can see after
comparing Tables 3 and 6, this strategy provides a quick-to-zero survival distribution
that underestimates the parameter of interest. In this sense, the weighted conditional
estimation is also an interesting alternative to Wang and Wells’ estimator because it
avoids the non-desirable effects of the isotonization.

It is important to note that the proposed Gómez and Serrat’s estimator can depend
on the partition and the resulting estimates can be sensitive to the sample size in each
category as well as to the number of different observed times T2 in the category. In
practice and for the Tibet clinical trial study, we have also analyzed the dataset using
other partitions, for instance splitting T1 into the following four categories: T1 < 12,
12 < T1 ≤ 24, 24 < T1 ≤ 48 and 48 < T1 ≤ 96, and similar results are obtained. In
fact, in order to choose a partition for the analysis, it is necessary to take into account not
only the resulting sample size in each category but also the number of different observed
times for T2 in the category.

Extensions of Gómez and Serrat’s approach to the estimation of the survival
function for other successive duration times given the information on the first are under
consideration for the authors, by studying the effect of the intermediate events in the
estimation of the appropriated weights for each subject. In the Tibet study it could be of
interest, for instance, to estimate the duration of the second period OFF, T3, given the
category of the duration of the first period OFF, T1.
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All the approaches in this paper have been implemented in S-PLUS and they are
easily exportable to other available software or platforms. The respective functions are
available at the web page of the GRASS group at http://www-eio06.upc.es/grass.
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Appendix: Visser’s likelihood

To simplify the expressions we introduce the following complementary notation. For
a given individual a different way of representing the observables is using (Y1,Y2, δ),
where

δ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if T1 > C (i.e. D1 = 0 = D2)
2 if T1 ≤ C < T1 + T2 (i.e. D1 = 1,D2 = 0)
3 if T1 + T2 ≤ C (i.e. D1 = 1,D2 = 1).

The likelihood for the n observations is as follows:

L =

n∏
i=1

{
Pr{T1 > y1i,C = y1i}1{δi=1}

Pr{T1 = y1i,T2 > y2i,C − y1i = y2i}1{δi=2}
Pr{T1 = y1i,T2 = y2i,C > y1i + y2i}1{δi=3}

}
and the corresponding log-likelihood, L = log L, since variables are discrete, the
possible values for y1i, y2i and C are only {0, 1, 2, . . . ,K} and C is independent of (T1,T2),
looks like as

L =

K∑
k=1

{nk· log Pr{T1 = k} + n1k log Pr{T1 > k}} +
K∑

k=1

K∑
l=1

{n3kl log Pr{T2 = l|T1 = k} + n2kl log Pr{T2 > l|T1 = k}} +
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K∑
k=1

{n1k log Pr{C = k} +
K∑

l=1

{n2kl log Pr{C = k + l} + n3kl log Pr{C > k + l}}}
= LT1

+LT2 |T1
+LC.

All the expressions for the probabilities can be replaced by functions containing
uniquely λT1

(k) and to λT2 |T1=k(l). For instance,

LT1
=

K∑
k=1

{nk·(log λT1
(k) + log

k−1∏
j=0

(1 − λT1
( j))) + n1k log

k∏
j=0

(1 − λT1
( j))}

=

K∑
k=1

nk· log λT1
(k) +

K∑
k=1

(n1k + nk·)
K−1∑
j=0

log(1 − λT1
( j)) +

K∑
k=1

n1k log(1 − λT1
(k)).

The nonparametric estimators for the hazard functions are obtained after maximizing
the log-likelihoodL = LT1

+LT2 |T1
+LC. Note that we are in fact maximizing log L with

respect to λT1
(k) and to λT2 |T1=k(l), and because the terms act additively we can maximize

first with respect to λT1
(k) and then with respect to λT2 |T1=k(l).
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