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Abstract

Scale mixtures of normal (SMN) distributions are used for modeling symmetric data. Members
of this family have appealing properties such as robust estimates, easy number generation, and
efficient computation of the ML estimates via the EM-algorithm. The Birnbaum-Saunders (BS)
distribution is a positively skewed model that is related to the normal distribution and has received
considerable attention. We introduce a type of BS distributions based on SMN models, produce
a lifetime analysis, develop the EM-algorithm for ML estimation of parameters, and illustrate the
obtained results with real data showing the robustness of the estimation procedure.
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1 Introduction

The family of scale mixtures of normal (SMN) distributions has attracted consider-

able attention; see, for example, Kelker (1970), Efron and Olshen (1978), Lange and

Sinheimer (1993), Gneiting (1997), Taylor and Verbyla (2004), Walker and Gutiérrez-

Peña (2007), and Lachos and Vilca (2007). This family provides flexible thick-tailed
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distributions that are often used for robust estimation of parameters of a symmetric

distribution; see Lange et al. (1989) and Lucas (1997). However, in many practical data

involving variates such as lifetimes, pollutant concentrations, and family incomes, it is

quite common to find skewed, heavy-tailed data. For this reason, it is necessary to have

flexible distributions with good properties for fitting such kind of data. Distributions

available with these characteristics are not abundant in the literature.

The Birnbaum-Saunders (BS) distribution is a positively skewed model with non-

negative support that has also received considerable attention in the last two decades.

This is primarily due to its derivation that is based on physical consideration, its

attractive properties, and its close relationship to the normal distribution. These aspects

of the BS model render it as an alternative to the normal model for data with non-

negative support and positive skewness. For more details about various developments

on the BS distribution, one may refer to Birnbaum and Saunders (1969a), Johnson et al.

(1995, pp. 651-663), and Sanhueza et al. (2008).

Exploiting the relationship between the BS and normal distributions, it is possible to

obtain a general class of BS distributions based on SMN models, which we call scale-

mixture Birnbaum-Saunders (SBS) distributions. The three main reasons for developing

this class of distributions are the following: (i) the use of the SBS specification to model

observable data enables us to make robust estimation of parameters in a similar way to

that of the SMS specification, which is not possible with the BS distribution or any other

well-known compatible model such as the lognormal distribution, (ii) the theoretical

arguments established in the genesis of the BS distribution can be transferred to the

SBS one and thus it is an appropriate model for describing different phenomena that

present accumulation of some type under stress, and (iii) SBS distributions allow us to

efficiently compute the maximum likelihood (ML) estimates of the model parameters

by using the EM-algorithm, which is not possible with the classical BS distribution;

moreover, the estimation process proposed in this paper generalizes the one developed

earlier by Birnbaum and Saunders (1969b). For more details about the EM-algorithm,

see Dempster et al. (1977).

The rest of this paper is organized as follows. In Section 2, we introduce the SBS

distributions and find their probability density function (pdf). In Section 3, we provide

some properties, moments, conditional distributions, and some transformations of SBS

models. In Section 4, we analyze some particular cases of these distributions. In Section

5, we produce a lifetime analysis mainly based on the failure rate function of SBS

distributions. In Section 6, we describe the ML method for estimating the parameters

of SBS models by means of the EM-algorithm. In Section 7, we provide an illustrative

example that shows the usefulness of the SBS distributions for fitting three real data

sets that are frequently utilized in the literature of this topic. Diagnostic and relative

change procedures are used in this example, which show the inherent robustness of the

estimation method based on SBS distributions. In addition, we discuss some aspects

related to a computational implementation in R code for the results obtained in this

paper. Finally, in Section 8, we draw some conclusions.
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2 Scale-mixture Birnbaum-Saunders distributions

SMN models are related to the normal distribution through the stochastic representation

Y = µ+
√

g(U)X , (1)

where X ∼ N(0,σ2), U is a positive random variable (r.v.) independent of X with

cumulative distribution function (cdf) H(·) indexed by a scalar or vector parameter ννν and

g(·) is a positive function. Note that when g(U) = 1/U in equation (1), the distribution

of Y reduces to the normal/independent distribution discussed by Lange and Sinheimer

(1993). Similarly, when g(U) = U in equation (1), the distribution of Y reduces to the

SMN distribution studied by Fernandez and Steel (1999).

An r.v. Y has a SMN distribution with location and scale parameters, µ ∈ R and

σ2 > 0, respectively, iff its pdf is of the form

φSMN(y) =
∫ ∞

0
φ
(
y|µ,g(u)σ2

)
dH(u), (2)

where φ
(
· |µ, g(·)σ2

)
is the pdf of the normal distribution with mean µ and variance

g(·)σ2 and H(·) is the cdf of U introduced in equation (1). For an r.v. Y with pdf given as

in equation (2), the notation Y ∼ SMN(µ,σ2;H) is used. Now, when µ= 0 and σ2 = 1,

we use the simpler notation Y ∼ SMN(H).

The BS distribution is related to the normal model through the stochastic represen-

tation

T =
β

4

[
αZ+

√
{αZ}2 +4

]2

, (3)

where Z ∼N(0,1) , α> 0 and β > 0. Thus, if an r.v. T has the BS distribution with shape

and scale parameters, α and β , respectively, then the notation T ∼ BS(α,β) is used in

this case. From equation (3), the r.v. Z can be stochastically represented in terms of T as

Z =
1

α

[√
T

β
−
√
β

T

]
. (4)

In an analogous way, if the stochastic representation

T =
β

4

[
α
√

g(U)Z +

√{
α
√

g(U)Z
}2

+4

]2

(5)

is considered, where Y =
√

g(U)Z ∼ SMN(H), with Z ∼N(0,1), then the r.v. T follows

a SBS distribution, which is denoted by T ∼ SBS(α,β ;H). The stochastic representation
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given in equation (5) is useful for generating random numbers, deriving moments and

implementing the EM-algorithm for ML estimation in SBS models, which is shown in

the following sections.

Theorem 1 Let T ∼ SBS(α,β ;H). Then, the pdf of T is

fT (t) = φSMN(a(t))A(t), t > 0,α> 0,β > 0, (6)

where φSMN(·) is the pdf given in equation (2) with µ = 0 and σ2 = 1, a(t) =[√
t/β −

√
β/t
]
/α, and A(t) = t−3/2[t + β ]/[2αβ1/2] is the derivative of a(t) with

respect to t.

Proof. The required result is directly obtained from the stochastic representation given

in equation (5) and the change-of-variable method.

3 Properties, moments, conditional distributions, and
transformations of SBS models

The following theorem provides some properties of SBS distributions.

Theorem 2 Let T ∼ SBS(α,β ;H). Then,

(i) cT ∼ SBS(α,cβ ;H), with c > 0;

(ii) 1/T ∼ SBS(α,1/β ;H).

Proof. Parts (i) and (ii) are directly obtained from the change-of-variable method.

Remark 1 Part (i) of Theorem 2 indicates that the SBS distributions belong to the

scale family, while Part (ii) demonstrates that these distributions are closed under

reciprocation; see Saunders (1974). In addition, Part (i) allows us to obtain a one-

parameter SBS distribution by αT/β ∼ SBS(α,α;H).

The following theorem allows us to compute the moments of SBS distributions.

Theorem 3 Let T ∼ SBS(α,β ;H). If the r.v. g(U) given in equation (1) has finite

moments of all order, then the k-th moment of T is given by

E[T k] = βk
k

∑
i=0

(
2k

2i

)
i

∑
j=0

(
i

j

)
ωk+ j−i

[α
2

]2[k+ j−i]
, k = 1,2, . . . ,

where ωr = E [{g(U)}r].

Proof. The required result is obtained from the stochastic representation given in

equation (5) and by repeated application of the binomial theorem.
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Remark 2 By using Theorem 2, the negative moments of T can be obtained by the

fact that β/T and T/β have the same distribution. Consequently, we get E[T−k] =

E[T k]/β2k, for k = 1,2, . . ..

Corollary 1 Let T ∼ SBS(α,β ;H). Then, the mean, variance, and the coefficients of

variation (CV), skewness (CS) and kurtosis (CK) of T are given by

E[T ] =
β

2
[2+ω1α

2], Var[T ] =
β2α2

4

[
ω1 +{2ω2 −ω2

1}α2
]
,

γ[T ] =
α
[
4ω1 +{2ω2 −ω2

1}α2
]1/2

2+ω1α2
,

α3[T ] =
4α
[
{3ω2 −3ω2

1}+ 1
2
{2ω3 −3ω1ω2 +ω

3
1}α2

]
[
4ω1 +{2ω2 −ω2

1}α2
]3/2

, and

α4[T ] =
16ω2 +{32ω3 −48ω1ω2 +24ω3

1}α2 +{8ω4 −16ω1ω3 +12ω2
1ω2 −ω4

1}α4

[
4ω1 +{2ω2 −ω2

1}α2
]2 ,

respectively.

Remark 3 The dimensionless ratios γ[T ], α3[T ], and α4[T ] are functionally indepen-

dent of the scale parameter β , with the skewness and kurtosis being basically controlled

by the shape parameter α.

The following theorem and its corollary provide conditional distributions that are

used in Section 5 to implement the EM-algorithm for the ML estimation of the parame-

ters of SBS models.

Theorem 4 Let T ∼ SBS(α,β ;H). Then, the r.v. T given U = u, which is denoted by

T |(U = u), follows the classical BS distribution with parameters
√

g(u)α and β , i.e.,

T |(U = u)∼ BS
(√

g(u)α,β
)
.

Proof. By using equation (5) and given U = u, we have T =β
[
αuZ+

√
{αuZ}2 +4

]2
/4,

where αu = α
√

g(u), which establishes the required result.

Corollary 2 Let T ∼ SBS(α,β ;H). Then:

(i) The pdf of the r.v. U |(T = t) is given by

hU |T (u|t) =
φ
(
a(t)|0,g(u)

)
hU(u)

φSMN

(
a(t)

) , u > 0;

(ii) The moments of the r.v. g(U)|(T = t) are given by
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E
[
{g(U)}s

∣∣(T = t)
]
=

1

φSMN

(
a(t)

)
∫ ∞

0
[g(u)]s−

1
2 φ

(
a(t)√
g(u)

)
dH(u), s ∈ R.

Next, we present some transformations related to SBS distributions.

Theorem 5 Let T ∼ SBS(α,β ;H). Then:

(i) The pdf of the r.v. V = Tη, with η> 0, is given by

fV (v) = φSMN

(
1

α

[{
v

δ

}1/σ

−
{
δ

v

}1/σ
])

1

ασv

[{
v

δ

}1/σ

+

{
δ

v

}1/σ
]
, v > 0,

where δ = βη and σ = 2η;

(ii) The pdf of the r.v. V = log(T ) is given by

fV (v) = φSMN

(
2

α
sinh

(
v−ρ

2

))
1

α
cosh

(
v−ρ

2

)
, −∞ < v < ∞,

where ρ = log(β);

(iii) The pdf of the r.v.

V =

[
1

α

{√
T

β
−
√
β

T

}]k

is given by

fV (v) =





1

k
v

1
k
−1φSMN

(
v

1
k

)
, −∞ < v < ∞, if k is odd,

2

k
v

1
k
−1φSMN

(
v

1
k

)
, v > 0, if k is even.

Proof. Parts (i), (ii) and (iii) are proved by using the change-of-variable method.

Remark 4 The density given in Theorem 5(i) corresponds to the pdf of an extension

of the SBS family, which we call the three-parameter SBS distributions, denoted by

T ∼ SBS(α,δ,σ;H). Note that σ = 2 produces the SBS family. Similarly, the density

given in Theorem 5(ii) can be seen as the pdf of an extension of the sinh-normal

distribution introduced by Rieck and Nedelman (1991).

Corollary 3 Let T ∼ SBS(α,β ;H) and V =
[√

T/β−
√
β/T

]
/α. Then:

(i) The pdf of V1 = |V | is fV1
(v1) = 2φSMN(v1), for v1 > 0;

(ii) The pdf of V2 =V 2 is fV2
(v2) = φSMN(v2)/

√
v2, for v2 > 0;

(iii) The pdf of V3 = exp(V ) is fV3
(v3) = φSMN

(
log(v3)

)
/v3, for v3 > 0.
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Remark 5 From Corollary 3, we see that the random variables V1, V2, and V3 follow

the half-symmetric, generalized chi-square with one degree of freedom (d.f.) and log-

symmetric distributions, respectively. For more details on these distributions, one may

refer to Fang et al. (1990).

4 Special cases of the SBS family

In this section, some special cases of the SBS family are considered, which are based

on the contaminated normal, slash and t models. These are obtained from the stochastic

representation given in equation (5), with g(U) = 1/U and U having a known pdf. In

addition, from Corollary 2, the conditional distribution of U |(T = t) is also considered

for all these special cases.

4.1 The contaminated normal BS distribution

As is well-known, contaminated normal models can be used for describing symmetric

data with outlying observations, where one of the parameters represents the percentage

of outliers, while the other one can be interpreted as a scale factor; see Little (1988). The

contaminated normal distribution can be utilized for generating a BS distribution, which

we call contaminated normal Birnbaum-Saunders (CN-BS) distribution. This model can

be used for describing positively skewed non-negative data in the presence of atypical

observations.

Consider the case when T ∼ SBS(α,β ;H), with H being the cdf of the r.v. U , which

has a pdf of the form

hU(u) = ν I{γ}(u)+ [1−ν ] I{1}(u), 0 < ν < 1, 0 < γ< 1, (7)

where IA(·) denotes the indicator function of the set A. Then, from equations (2), (6) and

(7), we have the pdf of the r.v. T to be

fT (t) =

[
ν
√
γφ
(√
γa(t)

)
+[1−ν ]φ

(
a(t)

)] t−3/2[t +β ]

2α
√
β

, t > 0, (8)

with α > 0,β > 0,0 < ν < 1, and 0 < γ < 1, where φ(·) is the standard normal pdf

and a(t) is given as in equation (6). The model with pdf given as in equation (8) is the

CN-BS distribution. In this case, the pdf of U |(T = t) is given by

hU |T (u|t) = ν p(t,u) I{γ}(u)+ [1−ν ] p(t,u) I{1}(u), (9)
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where

p(t,u) =

√
u exp

(
−ua(t)2

2

)

ν
√
γexp

(
−γa(t)2

2

)
+[1−ν ]exp

(
−a(t)2

2

) .

Thus,

E
[
U |(T = t)

]
=

1−ν +ν γ3/2 exp

(
[1−γ]a(t)2

2

)

1−ν +ν
√
γ exp

(
[1−γ]a(t)2

2

) . (10)

4.2 The slash Birnbaum-Saunders distribution

The slash distribution presents heavier tails than the normal one. In addition, when its

shape parameter converges to infinity this distribution approaches the normal one. As in

the case of the CN-BS distribution, the slash model can be utilized for generating a BS

distribution, which we call slash Birnbaum-Saunders (SL-BS) distribution. A study that

relates the BS and slash distributions has been done by Gómez et al. (2009).

Consider the case when T ∼ SBS(α,β ;H), with H being the cdf of the r.v. U ∼
Beta(ν ,1), which has a pdf of the form

hU(u) = ν uν−1, 0 < u < 1,ν > 0. (11)

Then, from equations (2), (6) and (11), we have the pdf of the r.v. T to be

fT (t) =

[
ν

∫ 1

0
uν−1φ

(
a(t)

∣∣0, 1
u

)
du

]
t−3/2[t +β ]

2α
√
β

, t > 0,α> 0,β > 0,ν > 0. (12)

The model with pdf given as in equation (12) is the SL-BS distribution. In this case,

U |(T = t)∼ Gamma
(
1/2+ν ,a(t)2/2

)
truncated at [0,1]. Thus,

E
[
U |(T = t)

]
=

[
1+2ν

a(t)2

] P1

(
3
2
+ν , a(t)2

2

)

P1

(
1
2
+ν , a(t)2

2

) , (13)

where Px(a,b) denotes the cdf of the Gamma distribution of parameters a and b

evaluated at x according to the parameterization established in the pdf given in equation

(14).
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4.3 The Student-t BS distribution

The Student-t distribution with ν d.f., denoted by tν , has been used as an alternative

model to the normal one for obtaining qualitatively robust parameter estimates; see

Lange et al. (1989) and Lucas (1997). Special cases of the tν distribution are the Cauchy

model, when ν = 1, and the normal model, when ν → ∞. As in the case of the CN-BS

and SL-BS distributions, the tν model can be utilized for generating a BS distribution,

which we call Student-t Birnbaum-Saunders (tν -BS) distribution. The tν -BS distribution

can be used for obtaining qualitatively robust parameter estimates with respect to the BS

distribution; see Balakrishnan et al. (2007), Leiva et al. (2008), and Barros et al. (2008).

Consider the case when T ∼ SBS(α,β ;H), with H being the cdf of the r.v. U ∼
Gamma(ν/2,ν/2), which has a pdf of the form

hU(u) =

[
ν
2

] ν
2 u

ν
2 −1

Γ(ν
2
)

exp
(
−ν u

2

)
, u > 0,ν > 0. (14)

Then, from equations (2), (6) and (14), we have the pdf of the r.v. T to be

fT (t) =
Γ
(

ν+1
2

)
√
π
√

ν Γ
(

ν
2

)
[

1+
1

να2

{
t

β
+
β

t
−2

}]− ν+1
2 t−3/2[t +β ]

2α
√
β

, t > 0, (15)

with α> 0, β > 0, and ν > 0. The model with pdf given as in equation (15) is the tν -BS

distribution. In this case, we have U |(T = t)∼ Gamma
(
[ν +1]/2, [ν +a(t)2]/2

)
. Thus,

E
[
U |(T = t)

]
=

ν +1

ν +a(t)2
.

5 Lifetime analysis in the SBS family

A useful indicator in lifetime analysis is the failure rate, which, for a non-negative r.v. T

with pdf fT and cdf FT , is defined as r
T
(t) = fT (t)/[1−FT (t)], for t > 0, and 0<FT (t)<

1. Although the distribution of T may be characterized equally in terms of the pdf or of

the failure rate, according to Cox and Oakes (1984, pp. 24-28) and Balakrishnan et al.

(2007), it is convenient to check the behaviour of the failure rate because distributions

with densities whose shapes are similar could have failure rates with different shapes.

If r
T
(t) is an increasing or decreasing function in t, then the distribution T belongs to

the class of increasing failure rate (IFR) or decreasing failure rate (DFR) distributions,

respectively. If r
T
(t) = λ > 0, for t > 0, we have FT (t) = 1− exp(−λt), and FT is the

exponential cdf with parameter λ. However, there are distributional families that have

a non-monotone failure rate. In this case, an important value for lifetime analysis is the
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change point of the failure rate of T (denoted by tc), which is the value where the hazard

changes its behaviour. Within the class of distributions with a non-monotone failure

rate, we can identify ∩-or-∪ shapes. Particularly, for the ∩-shaped case, we also have

two cases, when the failure rate is initially increasing until its change point and then: (i)

decreases to zero, as in the case of the lognormal distribution or (ii) decreases until it

becomes stabilized at a positive constant, as in the case of the classical BS distribution.

For this reason, for distributional families with a non-monotone failure rate, their change

point and their limiting behaviour are aspects that should be studied. For more details

about life distributions and lifetime analysis, see Johnson et al. (1995, pp. 651-663),

Marshall and Olkin (2007), and Saunders (2007).

As mentioned, the BS model belongs to the upside-down (or ∩-shaped) class and

its failure rate approaches 1/[2α2β ] as t → ∞; see Chang and Tang (1993). A complete

study of the change point of the BS failure rate can be found in Kundu et al. (2008) and

Bebbington et al. (2008). Next, we give some results related to the failure rate of SBS

distributions.

Theorem 6 Let T ∼ SBS(α,β ;H). Then, the failure rate of T is

r
T
(t) =

φSMN

(
a(t)

)
A(t)

ΦSMN

(
−a(t)

) , t > 0, 0 < ΦSMN(·)< 1,

where a(t) and A(t) are given as in equation (6) and ΦSMN(·) is the cdf of the SMN

family.

Proof. It follows immediately direct from the definition of the failure rate and the SMN

symmetry.

Theorem 7 Let T ∼ SBS(α,β ;H) and r
T
(·) be its failure rate. Then,

lim
t→∞

r
T
(t) =

1

2α2β
lim
t→∞

Wg,H

(
a(t)2

)
, (16)

where

Wg,H

(
a(t)2

)
=

∫ ∞
0 g−3/2(u)exp

(
− a(t)2

2g(u)

)
dH(u)

∫ ∞
0 g−1/2(u)exp

(
− a(t)2

2g(u)

)
dH(u)

.

Proof. For T ∼ SBS(α,β ;H), we have fT (t) =φSMN(a(t))A(t) and a function f (·) such

that φSMN(y) = f (y2), for all y ∈ R. In this case,

f (w) =
∫ ∞

0

1√
2πg(u)

exp

(
− w

2g(u)

)
dH(u), w ≥ 0. (17)
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Thus, Wf (w) = f ′(w)/ f (w) = −Wg,H(w)/2. As g(·) is a positive function, we have

Wg,H(w) ≥ 0. The proof of this theorem is similar to the one given in Theorem 4 of

Leiva et al. (2008).

Theorem 8 Let T ∼ SBS(α,β ;H) and that the distribution of U is unimodal. Then, the

pdf of the T is unimodal and the mode, denoted by tm, is obtained as solution of

Wg,H

(
a(tm)

2
)
=−α

2βtm [tm +3β ]

[tm −β ][tm +β ]
,

where 0 < tm < β .

Proof. From equation (17), we have that f (w) is a monotonic non-increasing function

for all w > 0, and so φSMN(·) is a unimodal function. The rest of the proof follows by

using Equation (8) of Leiva et al. (2008), replacing −Wg,H(u)/2 by wg(u), for u > 0.

Theorem 9 The failure rate of SBS distributions is an upside-down function for all

values of α and β .

Proof. Following the same procedure as in Kundu et al. (2008), we can write the SBS

failure rate as

r
T
(t) =

φSMN(a(t))A(t)

ΦSMN

(
−a(t)

) , t > 0.

Thus, it is enough to prove that limt→0 r
T
(t) = 0. As fT (t) = φSMN(a(t))A(t), this can

be expressed as

fT (t) =
1

2αβ1/2

[∫ ∞

0

1√
2πg(u)

∆1(t,u)dH(u)+β

∫ ∞

0

1√
2πg(u)

∆2(t,u)dH(u)

]
,

where ∆1(t,u) = t−1/2 exp
(
−a(t)2/[2g(u)]

)
and ∆2(t,u) = t−3/2 exp

(
−a(t)2/[2g(u)]

)
.

Then, following Kundu et al. (2008), we have that limt→0 ∆1(t,u) = limt→0 ∆2(t,u) = 0.

Thus, since limt→0 fT (t) = 0 and limt→0 ΦSMN (−a(t)) = 1, we have limt→0 r
T
(t) = 0.

Remark 6 Note that Theorems 6 and 7 contain the expression of Wg,H(·). Next, we

specify this expression for some particular cases (indicated in brackets) and obtain the

limit of r
T
(t) as t → ∞.

(i) [CN-BS distribution] Since

Wg,H

(
a(t)2

)
=

1−ν +ν γ3/2 exp
(
[1−γ]a(t)2

2

)

1−ν +ν
√
γ exp

(
[1−γ]a(t)2

2

) ,
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then limt→∞ r
T
(t) = γ/[2α2β ]; note that if γ= 1, we have the case of the classical

BS distribution;

(ii) [SL-BS distribution] Since

Wg,H

(
a(t)2

)
=

[
1+2ν

a(t)2

] P1

(
3
2
+ν , a(t)2

2

)

P1

(
1
2
+ν , a(t)2

2

) ,

where Px(a,b) denotes the cdf of the Gamma distribution of parameters a and b

evaluated at x according to the parameterization established in the pdf given in

equation (14), then limt→∞ r
T
(t) = 0; note that, in this case, the BS class has a

failure rate similar to that of the lognormal distribution;

(iii) [tν -BS distribution] Since

Wg,H

(
a(t)2

)
=

ν +1

ν +a(t)2
,

then limt→∞ r
T
(t) = 1/[2α2β ], if ν → ∞, which corresponds to the case of the

classical BS distribution; however, if ν → 0, then limt→∞ r
T
(t) = 0, which is also

the case when ν = 1 corresponding to the Cauchy-BS distribution, such as occurs

with the failure rate of the lognormal and SL-BS distributions.

Figure 1 shows different shapes of the failure rate of SBS distributions through which is

possible compare their shapes to those of the classical BS model. This graphical analysis

is coherent with the results given in this section.

Figure 1: Failure rate plots for the indicated distributions for some choices of the parameters.

6 ML estimation via EM-algorithm in the SBS class

The EM-algorithm is a well-known tool for ML estimation when unobserved (or

missing) data or latent variables are present while modeling. This algorithm enables the
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computationally efficient determination of the ML estimates when iterative procedures

are required. Specifically, let t = [t1, . . . , tn]
⊤ and u = [u1, . . . ,un]

⊤ denote observed

and unobserved data, respectively. The complete data tc = [t⊤,u⊤]⊤ corresponds to

the original data t augmented with u. We now detail the implementation of the ML

estimation of parameters of SBS distributions by using the EM-algorithm.

Let T1, . . . ,Tn be a random sample of size n, where Ti ∼ SBS(α,β ;H), for i= 1, . . . ,n.

Here, the parameter vector is θ = [α,β ]⊤, with θ ∈ Θ ≡ R+ ×R+. Let ℓc(θ |tc) and

Q(θ |θ̂ ) = E[ℓc(θ |tc)|t, θ̂ ] denote the complete-data log-likelihood function and its

expected value conditioned to the observed-data, respectively. Each iteration of the EM

algorithm involves two steps, i.e., the expectation step (E-step) and the maximization

step (M-step), which are defined by:

E-step. Compute Q
(
θ |θ̂ (r)

)
, for r = 1,2, . . ..

M-step. Find θ
(r+1) such that Q

(
θ
(r+1) |θ̂ (r)

)
= maxθ∈Θ Q

(
θ |θ̂ (r)

)
, for r = 1,2, . . ..

Note that, by using Theorem 4, the above setup can be written as

Ti|(Ui = ui)
ind∼ ∼ BS

(√
g(ui)α, β

)
, (18)

Ui
ind∼ hU(ui), i = 1, . . . ,n. (19)

We assume that the parameter vector ννν that indexes the pdf hU(·) is known. An

optimal value of ννν can then be chosen by using the Schwarz information criterion;

see Spiegelhalter et al. (2002). Thus, under the hierarchical representation given in

equations (18) and (19), it follows that the complete log-likelihood function associated

with tc = [t⊤,u⊤]⊤ is given by

ℓc(θ |tc) ∝ −n log(α)− n

2
log(β)− 1

2α2

n

∑
i=1

1

g(ui)

[
ti

β
+
β

ti
−2

]
+

n

∑
i=1

log(ti +β) . (20)

Letting ûi = E[1/g(Ui)|ti,θ = θ̂ ], for i = 1, . . . ,n, it follows that the conditional expec-

tation of the complete log-likelihood function has the form

Q(θ |θ̂ ) ∝ −n log(α)− n

2
log(β)− 1

2α2

n

∑
i=1

ûi

[
ti

β
+
β

ti
−2

]
+

n

∑
i=1

log(ti +β) . (21)

We then have the EM-algorithm for the ML estimation of the parameters of the SBS

distributions as follows:

E-step. Given θ = θ̂ , compute ûi, for i = 1, . . . ,n;

M-step. Update θ̂ by maximizing Q(θ |θ̂ ) in equation (21) over θ , which leads to the

following expressions:
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α̂2 =
Su

β̂
+
β̂

Ru

−2ū and β̂2 − β̂
[
k(β̂)+2 ūRu

]
+Ru

[
ū k(β̂)+Su

]
= 0, (22)

where

ū =
1

n

n

∑
i=1

ûi, Su =
1

n

n

∑
i=1

ûi ti, Ru =
1

1
n ∑

n
i=1

ûi

ti

, and k(x) =
1

1
n ∑

n
i=1

1
x+ti

. (23)

Remark 7 Note that if g(U) = 1 in the EM-algorithm presented above (i.e., if the r.v.

U is degenerate), then the M-step equations reduce to those when the BS distribution is

used. Thus, the EM-algorithm here generalizes the results provided earlier by Birnbaum

and Saunders (1969b). Moreover, the presented procedure provides an EM-algorithm for

the tν -BS distribution, which has been studied recently by Balakrishnan et al. (2007),

Leiva et al. (2008), and Barros et al. (2008). Useful starting values necessary to imple-

ment this algorithm can be the ML estimates of the parameters of the BS distribution.

7 Illustrative numerical example

In this section, for the purpose of illustration, we analyze the data of Birnbaum and

Saunders (1969b). These data correspond to fatigue life represented by cycles (×10−3)

until failure of aluminum specimens of type 6061-T6. These specimens were cut parallel

to the direction of rolling and oscillating at 18 cycles per seconds. They were exposed to

a pressure with maximum stress of 21,000 (Psi21), 26,000 (Psi26) and 31,000 (Psi31)

pounds per square inch (psi) for n = 101,102, and 101 specimens, respectively. All

specimens were tested until failure.

We first present an exploratory data analysis. Table 1 provides a descriptive summary

while Figure 2 shows the histograms and boxplots for Psi21, Psi26, and Psi31.

A careful look at Table 1 and Figure 2 reveals slightly positively skewed distributions

with moderate kurtosis and some atypical observations, which can be potentially influ-

ential on the ML estimates of the parameters of the BS distribution. SBS distributions

should consider the degrees of skewness and kurtosis present in the data. In addition,

they also enable the estimation of the parameters of the model in a robust manner when

atypical observations are present.

We now find the ML estimates of the parameters α and β of SBS distributions.

Several authors have suggested to fix the parameter ννν for the distribution of the

r.v. U defined in equation (1) and assume it to be a known value or otherwise get

information for it from the data. For instance, in the case of the Student-tν distribution,

the reason for doing it is that only when the parameter ν is fixed, the influence function

is bounded, which allows us to obtain qualitatively robust estimators of parameters.
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Table 1: Descriptive statistics for the indicated data sets

Data set Mean Median StDev CV CS CK Range Min. Max. n

Psi21 1400.84 1416.00 391.01 27.91% 0.14 −0.28 2070 370 2440 101

Psi26 397.88 400.00 62.32 15.66% 0.01 −0.21 327 233 560 102

Psi31 133.73 133.00 22.36 16.70% 0.33 0.97 142 70 212 101

Figure 2: Histograms and boxplots for the indicated data sets.

For more details about these proposals and their justification, one can refer to Lucas

(1997); see also Lange et al. (1989) and Leiva et al. (2008).

In order to select the best SBS model that fits the data, we have implemented the

estimation procedure described in Section 6 in R code (http://www.R-project.

org); see R Development Core Team (2008). As mentioned earlier, we use the ML es-

timates of α and β of the classical BS distribution as starting values in the numerical

iterative procedure, which can be easily obtained from an R package called bs that is

available from CRAN (http://CRAN.R-project.org); see Leiva et al. (2006).

For ML estimation via EM-algorithm in SBS models, we have implemented the com-

mand smnbsEstimation(), which automatically chooses the distribution that best

fits the data set among the CN-BS, SL-BS and tν -BS distributions by maximizing the

likelihood function. This command also computes the ML estimates of the parameters of

SBS models separately. For instance, in the case of the tν -BS distribution, the following

algorithm can be used for estimating its parameters:

(A1) For ν = 1 to ν = 100 by 1:

(A1.1) Determine the ML estimates of the parameters α and β of the tν -BS model

via the EM-algorithm proposed in Section 6 by beginning with the ML

estimates of α and β of the BS distribution as starting values for the numerical

procedure;

(A1.2) Compute the likelihood function;

(A2) Choose the value of ν that maximizes the likelihood function and then establish as

ML estimates of α and β those associated with that maximum likelihood function.
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The real data sets used in this example are implemented in the bs package, which are

called psi21, psi26 and psi31 and obtained by using the instructions data(psi21),

data(psi26), and data(psi31), respectively. Now, if the following commands

are used

> smnbsEstimation(psi21)

> smnbsEstimation(psi26)

> smnbsEstimation(psi31)

then the distributions that best fit the Psi21, Psi26 and Psi31 data set are chosen among

the CN-BS, SL-BS and tν -BS models. In addition, the ML estimates of α and β of these

models are computed. The results can be saved in R variables as follows:

> estimatespsi21 <- smnbsEstimation(psi21)

> estimatespsi26 <- smnbsEstimation(psi26)

> estimatespsi31 <- smnbsEstimation(psi31)

obtaining, respectively,

> smnbsEstimation(psi21)

$Best model

[1] "CN-BS"

$alpha

[1] 0.2737684

$beta

[1] 1356.624

$nu

[1] 0.02

$gamma

[1] 0.08

$logLikelihood

[1] -747.3013

> smnbsEstimation(psi26)

$Best model

[1] "BS-t"

$alpha

[1] 0.1534232

$beta

[1] 393.9034

$nu

[1] 18

$logLikelihood

[1] -567.4124
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and

> smnbsEstimation(psi31)

$Best model

[1] "CN-BS"

$alpha

[1] 0.1465890

$beta

[1] 132.2940

$nu

[1] 0.06

$gamma

[1] 0.18

$logLikelihood

[1] -455.4714

From these results and within the three considered distributions, we can see that the

CN-BS, t18-BS, CN-BS distributions present the best fit to the Psi21, Psi26 and Psi31

data sets, respectively.

(a) BS distribution (b) BS distribution (d) BS distribution

(d) SBS distribution (e) SBS distribution (f) SBS distribution

Figure 3: Influence index plots for the indicated data sets and models
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In order to show the inherent robustness of the estimation procedure based on

Birnbaum-Saunders distributions from scale-mixture of normals, we carry out a brief

diagnostic analysis based on local influence and relatives changes. For more details

about local influence, see Cook (1986).

In Figure 3, we can observe the inherent robustness of the estimation procedure based

on SBS distributions. Values of Ci, for i = 1, . . . ,n, –total local influence for the ith case–

show a more pronounced potential influence of observations for the classical BS model.

For more details about the local influence techniques in BS models, see Galea et al.

(2004) and Leiva et al. (2007).

Table 2 presents the relative changes (RC), in percentage, of each parameter estimate,

defined by RCθ j
= |[θ̂ j − θ̂ j(I)]/θ̂ j|×100%, for j = 1,2, with θ1 = α and θ2 = β , where

θ̂ j(I) denotes the ML estimate of θ j after the set I of cases has been removed. From this

table, we note that the RC values are greater for the classical BS model than for the SBS

models. Thus, all the specimens are retained in the analysis as they do not greatly affect

the ML estimates under the SBS models.

Table 2: RC (in %) for the indicated parameters, models and data sets

SBS BS

Data set Dropped case(s) α̂ β̂ α̂ β̂

S21 {1} 3.00 1.02 9.83 1.60

{101} 1.41 0.56 1.48 0.61

{1,101} 4.44 0.49 11.5 0.99

S26 {1} 2.35 0.20 4.96 0.53

{102} 1.66 0.22 1.96 0.35

{1,102} 4.00 0.02 7.02 0.18

S31 {1} 2.73 0.19 6.90 0.66

{101} 2.25 0.18 3.56 0.48

{1,101} 4.94 0.00 10.7 0.18

Figure 4: Empirical cdf (in bold) against estimated SBS theoretical cdf (in gray) for the indicated data.
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In order to show how the SBS family fits the data, we use the invariance property of

the ML estimators for obtaining the estimated SBS cdf, which is shown in Figure 4 on

the empirical cdf of the data. In addition, the application of the Kolmogorov-Smirnov

test provides the p-values 0.765, 0.974, and 0.799 for the Psi21, Psi26 and Psi31 data

sets, respectively. These results suggest an excellent agreement between the SBS models

and the data.

8 Concluding remarks

We have introduced a general class of Birnbaum-Saunders distributions based on

scale mixtures of normal distributions. This class allows us to obtain qualitatively

robust maximum likelihood estimates and efficiently compute these by using the EM-

algorithm. Specifically, we have found the pdf, shown some properties, computed the

moments, considered some transformations, and carried out a lifetime analysis based

on the failure rate of scale-mixture Birnbaum-Saunders distributions. We have also

presented some particular cases of these distributions based on the contaminated normal,

slash and t models. In addition, we have implemented in R code different aspects

pertaining to the considered distributions, including the mentioned EM-algorithm for

determining the ML estimates of their parameters, which can make this model more

attractive to users. Moreover, we have illustrated the results obtained for this class

of distributions and discussed the computational implementation of them by using a

numerical example with three different data sets, which display the flexibility, adequacy,

and inherent robustness of the estimation procedure based on a Birnbaum-Saunders

distribution from scale-mixture of normals.
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