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Abstract

In this paper a robust estimator against outliers along with some other existing interval estimators
are considered for estimating the population standard deviation. An extensive simulation study has
been conducted to compare and evaluate the performance of the interval estimators. The exact
and the proposed robust method are easy to calculate and are not overly computer-intensive. It
appears that the proposed robust method is performing better than other confidence intervals for
estimating the population standard deviation, specifically in the presence of outliers and/or data
are from a skewed distribution. Some real-life examples are considered to illustrate the application
of the proposed confidence intervals, which also supported the simulation study to some extent.
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1. Introduction

Point estimates are of limited value, since we cannot attach to them statements regarding

the amount of confidence that they have estimated the unknown parameter. Of great

value is an interval estimate, an estimate about which we can make statements of

confidence (Daniel, 1990). The confidence interval is defined as an estimated range of

values that is likely to include an unknown population parameter. If independent samples

1 Department of Mathematics, Faculty of Science, Hashemite University, Zarqa 13115, Jordan, mabushaw-
iesh@hu.edu.jo

2 School of Engineering and Computer Science, Independent University, Bangladesh, Dhaka 1229, Bangladesh,
banik@secs.iub.edu.bd

3 Department of Mathematics and Statistics, Florida International University, Modesto A. Maidique Campus,
Miami, FL 33199, USA, kibriag@fiu.edu

Received: February 2011

Accepted: May 2011



84 A simulation study on some confidence intervals for the population standard deviation

are take repeatedly from the same population, and the confidence interval is calculated

for each sample, then a certain percentage, called the confidence level of the interval,

will include the unknown population parameter.

Scale estimators are very important in many statistical applications. The sample

standard deviation is the most common scale estimator that provides a logical point

estimate of the population standard deviation, σ. Unfortunately, the sample standard

deviation, S, is very sensitive to the presence of outliers in the data. Furthermore,

S is not necessarily the most efficient or meaningful estimator of scale in skewed

and leptokurtic distributions and it is notable that it is not robust to slight deviations

from normality (Tukey, 1960). S has a good efficiency in platykurtic and moderately

leptokurtic distributions but the classic inferential methods for it may perform poorly in

realistically non-normal distributions (Bonett, 2006). Also, according to Gorard (2004),

S has no obvious intuitive meaning because squaring before summing and then taking

the square root makes the resulting figure difficult to understand, which restricts any

subsequent intuitive interpretation. Nevertheless, S is the most efficient scale estimator

for the normal distribution often used to construct the 100(1−α)% confidence interval

forσ. The standard error of S is a scale multiple of the actual parameter being estimated.

In this paper, we are looking for a scale estimator which is robust, has a closed form, and

easy to compute as an alternative to S. The Rousseeuw-Croux estimator, Qn might be a

more meaningful measure of variation and may be preferred to S. It is the most efficient

scale estimator for the normal distribution often used to construct the 100(1 − α)%
confidence interval for σ.

The exact 100(1−α)% confidence interval for the population standard deviation,

σ, is based on the assumption that the underlying distribution of the data is normal

with no outliers, but what would happen if the data are not from a normal distribution

instead of heavier tails or from a skewed distribution. The statistical literature shows

that robust methods might give more meaningful measures of scale and are indeed more

resistant to departures from normality and presence of outliers than S. Therefore, the

need for alternatives to the exact 100(1−α)% confidence interval for σ comes to play.

The statistical literature is full of robust confidence intervals for the mean, for example

Tukey and McLaughlin (1963); Huber (1964); Dixon and Tukey (1968); De Wet and

van Wyk (1979); Gross (1973, 1976); Bickel and Doksum (1977, p. 375); Kim (1992)

and Clark (1994). For small-sample inference about variance and its transformations we

refer to Longford (2010) among others. The problem of constructing robust confidence

interval for the population standard deviation,σ, has received much less attention. Here,

by a robust confidence interval, we mean that its actual coverage probability is close to

the specified confidence level (1−α) with a short length of the confidence interval.

In this paper, an approximate confidence interval for the population standard devia-

tion, σ, for one sample problems that is much less sensitive to the presence of outliers

and/or to departure from normality is proposed. The proposed method provides an alter-

native to the exact 100(1−α)% confidence interval forσ based on Qn. The performance

of the proposed method is investigated through a Monte Carlo simulation study based
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on various evaluation criteria such as coverage probability, average width and standard

deviation of the width. The coverage probability naturally varies from distribution to dis-

tribution for a given procedure, but a good procedure should keep this variation small.

Furthermore, we want a confidence interval whose endpoints are generally close to-

gether, thus a small average width is good (Gross, 1976). A set of real data is employed

to illustrate the results given in the paper.

The organization of the paper is as follows. In Section 2, we presented Rousseeuw-

Croux estimator, Qn, for estimating σ, and discussed outliers. The proposed confidence

intervals for σ are presented in Section 3. A Monte Carlo simulation study is conducted

in Section 4. Some real life data are analyzed in Section 5. Finally, some concluding

remarks based on simulation and numerical examples are given in Section 6.

2. Rousseeuw-Croux estimator, QnQnQn and outliers

2.1. The Rousseeuw-Croux estimator

Rousseeuw and Croux (1993) proposed two robust estimators for scale, the Sn and Qn

estimators. They can be used as initial or ancillary scale estimators in the same way

as the median absolute deviation (MAD) but they are more efficient and not biased

towards symmetric distributions. The breakdown point of the Sn estimator is 50% and

its efficiency is 58%, while Qn has the same breakdown point but its efficiency at

normal distributions is very high, about 82%. Due to its high efficiency and other good

properties, the Qn estimator is considered in this paper. Mosteller and Tukey (1977)

define two types of robustness as follows:

1. Resistance: This means that changing a small part even by a large amount of the

data does not cause a large change in the estimate.

2. Robustness of efficiency: This means that the statistic has high efficiency in a

variety of situations rather than in any one situation. Efficiency means that the

estimate is close to the optimal estimate given that the distribution of the data is

known.

Many statistics have one of these properties. However, it can be difficult to find

statistics that have both resistance and robustness of efficiency. The most common

estimate of scale, S is the most efficient estimate of scale if the data come from a

normal distribution. However, S is not robust in the sense that changing even one

value can dramatically change the computed value of S; that is, it has poor resistance.

In addition, it does not have robustness or efficiency for non-normal data. MAD and

the inter-quartile range (IQR) are the two most commonly used robust alternatives to

S. MAD in particular is a very robust scale estimator. However, MAD does not have
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particularly high efficiency for data (37% for normal data) and also MAD has an implicit

assumption of symmetry, that is it measures the distance from a measure of central

location (the median). Rousseeuw and Croux (1993) proposed the Qn estimate of scale

as an alternative to MAD. It shares desirable robustness properties with MAD (50%

breakdown point, bounded influence function). In addition, it has significantly better

normal efficiency (82%) and it does not depend on symmetry.

2.1.1. Definition of Qn

The estimator Qn for a random sample X1,X2, . . . ,Xn with model distribution F is defined

as:

Qn = 2.2219 {|Xi −X j| ; i < j ; i = 1, 2, 3 , . . . , n ; j = 1, 2, 3, . . . , n}{g} (1)

where g =
(

h
2

)(
n
2

)
/4 and h =

[
n
2

]
+ 1 (i.e., roughly half the number of observations).

Here the symbol (.) represents the combination and the symbol [.] is used to take only

the integer part of a fraction. The Qn estimator is the g-th order statistic of the
(

n
2

)
inter-

point distances. The value 2.2219 is chosen to make Qn a consistent estimator of scale

for normal data. Rousseeuw and Croux (1993) have derived the unbiasing factor dn so

that dn×Qn becomes an unbiased estimator of σ for the case of normal distribution.

These values of dn are provided here in Table 2.1 as a function of n. The scatterplot

between n and dn is presented in Figure 2.1. We can observe from both Table 2.1 and

Figure 2.1 that dn is sensitive to the sample sizes.

Table 2.1: The values of the
unbiasing factor dn.

n dn n dn

12 0.399 14 0.787

13 0.994 15 0.915

14 0.512 16 0.808

15 0.844 17 0.924

16 0.611 18 0.826

17 0.857 19 0.931

18 0.669 20 0.840

19 0.872 21 0.938

10 0.725 22 0.853

11 0.887 23 0.943

12 0.759 24 0.863

13 0.903 25 0.647

n

d
n
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Figure 2.1: Scatterplot between n and dn.
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An approximation result of dn for larger values of n is given by Croux and Rousseeuw

(1992) as follows:

dn =





n

n+1.4
for odd values of n

n

n+3.8
for even values of n

(2)

2.1.2. Properties of Qn

The Qn estimator has a simple and explicit formula, which is equally suitable for

asymmetric distributions. The main properties of the Qn estimator investigated by

Rousseeuw and Croux (1993) are given below:

1. For any sample X = {X1,X2, . . . ,Xn} in which no two points coincide, the break-

down point of the scale estimator Qn is given by ǫ ∗ (Qn,X) =

[n

2

]

n
.

2. For F = Φ, where Φ(x) is the standard normal distribution function, the value of

d is given by d = 1
√

2Φ−1

(
5

8

) = 2.2219. With this constant d, Qn has bias in small

samples.

3. The influence function of Qn estimator is smooth and unbalanced (see Rousseeuw

and Croux, 1993). For a model distribution F which has a density f , the influence

function of Qn is given by

IF(x;Q,F) = d

1
4
−F(x+d−1)+F(x−d−1)∫

f (y+d−1) f (y)dy

4. The gross-error sensitivity of the Qn estimator is larger than those of MAD and Sn

estimators and its value is γ∗ (Q,Φ) = sup
x

|IF(x;Q,Φ)|= 2.069.

5. The asymptotic variance of Qn in the case of normal distribution is given by

V (Q,Φ) = 0.6077 and this yields an efficiency of 82.27%. This is very high

relative to the MAD estimator whose efficiency at normal distribution is only

36.74% and Sn whose efficiency is 58.23%. Using a simulation study, Rousseeuw

(1991) concluded that the estimator Qn is more efficient than MAD and Sn

estimators. However, Qn loses some of its efficiency for small sample sizes.

6. The square of the Qn estimator, that is, (Qn)2, can be used as an estimate of σ2.

Even though both Qn and (Qn)2 are biased estimators of σ and σ2 respectively,

they are efficient estimators of their respective targets (Rousseeuw, 1991).
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2.2. Estimators and outliers

The presence of outliers in the data set is one of the most important topics in statistical

inference. An outlier can be defined as observations which appear to be inconsistent

with the remaining set of data. Outliers can be contaminants, i.e. arising from other

distributions or can be typical observations generated from the assumed model (Barnett,

1988). Therefore, outliers need very special attention because a small departure from the

assumed model can have strong negative effects on the efficiency of classical estimators

for location and scale (Tukey, 1960). In this section, a simple numerical example taken

from Rousseeuw (1991) is given to show the effect of outliers on S and Qn estimators.

Suppose we have five measurements of a concentration without outliers given as follows:

5.59,5.66,5.63,5.57,5.60

Let us now suppose that one of these concentrations has been wrongly recorded so that

the data have an outlier value and become as follows:

5.59,5.66,5.63,55.7,5.60

Based on these two data sets, the values of the two estimators are calculated and given

in Table 2.2.

Table 2.2: Values of the estimators for the example.

Scale Estimator Data Set

Without Outlier With Outlier

S 0.0354 22.4

Qn 0.066657 0.066657

From Table 2.2, we notice that the value of the single outlier has changed the value

of S, which becomes very large. The robustness of the Qn estimator is clear where the

value of it is the same for the two data sets.

3. Proposed robust confidence interval for σ

3.1. Exact confidence interval for σ

Let X1, X2, . . . ,Xnbe a random sample of size n from the normal distribution, i.e., Xi ∼
N(µ, σ2) for all i, then

(n−1)S2

σ2 = 1

σ2 ∑
n
i=1(Xi−X)2 ∼χ2

n−1 where S2 = 1
n−1 ∑

n
i=1(Xi− X̄)2

is the sample variance. The exact 100(1 − α)%confidence interval for a population

variance σ2 is given as follows:
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P

(
(n−1)S2

χ2
(α2 ,n−1)

< σ2 <
(n−1)S2

χ2
(1−α2 ,n−1)

)
= 1−α (3)

where χ2
α

2
and χ2

1−α2
are the (α

2
)th and (1− α

2
)thpercentile points of the χ2distribution

with (n−1) degrees of freedom. Taking the square root of the endpoints of equation (3)

gives a 100(1−α)% confidence interval for σ as follows:

( √
(n−1)S2

χ
2
(α2 ,n−1)

,

√
(n−1)S2

χ
2
(1−α2 ,n−1)

)
(4)

The exact confidence interval for σ2 in (3) is hypersensitive to minor violations of the

normality assumption. Scheffe (1959, p. 336) show that (3) has an asymptotic coverage

probability of about 76, 63, 60 and 51 for the Logistic, the Student t(7), the Laplace and

Student t(5) distributions respectively. The result is disturbing because these symmetric

distributions are not easily distinguished from a normal distribution unless the sample

size is large. Also, the exact confidence interval forσ2 in (3) as demonstrated by Lehman

(1986, p. 206) is highly sensitive to the presence of outliers and / or to departure from

normality. However, as pointed out by Lehman, the sample size n may have to be rather

large for the asymptotic result to give a good approximation.

3.2. Robust confidence intervals

In this section, we will propose the new robust confidence interval for estimating the

population standard deviation σ. Instead of assuming Xi ∼ N(µ, σ2), let X1, X2, . . . ,Xn

are the random samples of size n from a continuous, independent and identically

distributed random variable. The random variable T is defined as the ratio,

T =
dnQn

σ
(5)

where the expression dnQn acts as an unbiased estimator of σ so that E(T)=1 for normal

distribution. Based on Rousseeuw and Croux(1993), for larger values of n, the following

asymptotic result can be used:

T =
dnQn

σ
∼ N

(
1,

1

1.65n

)
(6)

The following approximation result can be obtained:

dnQn ∼ N

(
σ,

1

1.65n
σ

2

)
(7)
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Therefore from (7), we can get the following pivotal quantity:

dnQn−σ
1

1.28
√

n
σ

∼ N(0, 1) (8)

Now, using the above pivotal quantity, we can derive the 100(1−α)% robust confidence

interval for σ as follows:

P


q1 <

dnQn−σ
1

1.28
√

n
σ

< q2


= 1−α

⇒ P

(
q1

1.28
√

n
+1 <

dnQn

σ
<

q2

1.28
√

n
+1

)
= 1−α

⇒ P

(
1.28

√
n∗dnQn

q1 +1.28
√

n
< σ <

1.28
√

n∗dnQn

q2 +1.28
√

n

)
= 1−α

where q1 = Zα
2
and q2 = Z1−α2 are the (α

2
)th and (1− α

2
)thpercentile points of the standard

normal distribution so that the length is minimum. Therefore, the 100(1−α)% robust

confidence interval for σ, is as follows:

(
1.28

√
n ∗dnQn

Zα
2
+1.28

√
n

,
1.28

√
n ∗dnQn

Z1−α2 +1.28
√

n

)
=

(
DQn

Zα
2
+D1

,
DQn

Z1−α2 +D1

)
(9)

where the values of the factors D = 1.28
√

n∗dn and D1 = 1.28
√

n.

An approximation result of D for larger values of n can be calculated as follows:

D =





(1.28
√

n)

(
n

n+1.4

)
, for odd values of n

(1.28
√

n)

(
n

n+3.8

)
, for even values of n

(10)

The squaring of the endpoints of equation (9) gives a 100(1−α)%confidence interval

for σ2.

3.3. Bonett confidence interval

Let X1, X2, . . . ,Xn be a random sample of size n from the normal distribution, that is,

Xi ∼ N(µ, σ2) for all i. Scheffe (1959) found in his simulation study, the exact CI for σ
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does not have an asymptotic coverage probability for non-normal distributions. Bonett

(2006) proposed the following (1-α)100% confidence interval (CI) for σ as

LCL = exp
{

ln(cσ̂2)−Zα/2se
}

and UCL = exp
{

ln(cσ̂2)+Zα/2se
}

where Zα/2 is two-sided critical z-value, se = c[{γ̂4(n − 3)/n}/(n − 1)]1/2,

c = n/(n−Zα/2) and γ̂4 = n∑i(Yi − µ̂)4/(∑i(Yi − µ̂)2)2.

3.4. Cojbasic and Tomovic (CT) CI

Based on t-statistic, Cojbasic and Tomovic (2007) proposed the following nonparamet-

ric bootstrap t CI:

Iboot = S2 − t̂(α)
√

v̂ar(S2)

where S2 = 1
n−1 ∑i(Xi − X̄)2 is the sample variance, t̂(α) is a α percentile of T∗ defined

as T∗= S2∗−S2√
v̂ar(S2∗)

, S2∗ is a bootstrap replication of statistic S2 and v̂ar(S2) is a consistent

estimator of the variance, defined by 2σ4/(n−1).

3.5. Some bootstrap CIs

Let X(*) =X
(∗)
1 , X

(∗)
2 , . . . , X

(∗)
n , where the i-th sample is denoted by X(i) for i= 1,2, . . . ,B

and B is the number of bootstrap samples. We proposed the following bootstrap CIs for

the sample σ:

Non-parametric bootstrap CI

Compute σ for all bootstrap samples and then order the sample SDs of each bootstrap

samples as follows:

S∗
(1) ≤ S∗

(2) ≤ S∗
(3) · · · ≤ S∗

(B)

CI for population σ:

LCL = S∗
[(α/2)B] and UCL = S∗

[(1−α/2)B]

CI for population σ:

LCL = S
√
(n−1)/χ∗2

α/2,(n−1) and UCL = S
√
(n−1)/χ∗2

1−α/2,(n−1)
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where χ∗2
α/2

and χ∗2
1−α/2

are the (α/2)-th and (1−α/2)-th sample quantiles of χ2=
(n−1)S2

σ̂
2
B

and σ̂B =
√

1
B−1 ∑

B
i=1(x̄

∗
i − ¯̄x)2 and x̄∗i is the i-th bootstrap sample mean, ¯̄x is the bootstrap

mean and σ̂B is the bootstrap standard deviation.

Bootstrap robust CI

CI for population σ:

LCL =
DQn

Z∗
α/2

+D1

and UCL =
DQn

Z∗
1−α/2

+D1

where Z∗
α/2

and Z∗
1−α/2

are the (α/2)th and (1−α/2)th sample quantiles of the bootstrap

test statistic, Z∗
i =

(x̄∗i − ¯̄x)

σ̂B
.

We note that all proposed confidence intervals except exact and Bonett do not require

any distributional assumptions. However, bootstrap methods are computer intensive,

where as others are very easy to compute. The exact method works better for any sample

size when the data are from the normal distribution.

4. Simulation study

Our basic objective is to investigate some efficient estimators ofσ by a simulation study.

Since a theoretical comparison among the intervals is not possible, a simulation study

has been made to compare the performance of the estimators.

4.1. Simulation technique

The flowchart of our simulation is as follows:

1. We use sample sizes n = 5, 10, 20, 30, 50, 70 and 100.

2. Random samples are generated from symmetric and skewed distributions:

(a) Normal distribution with mean 3 and SD 1.

(b) Chi-square distribution with df 1.

(c) Lognormal distribution with mean 1 and SD 0.80.

We used 5000 simulation replications and 1500 bootstrap samples for each n. The

most common 95% confidence interval (α= 0.05) for the confidence coefficient is used.

It is well known that if the data are from a symmetric distribution (or n is large), the

coverage probability will be exact or close to (1−α). So the coverage probability is a

useful criterion for evaluating the confidence interval. Another criterion is the width of
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the confidence interval. A shorter length width gives a better confidence interval. It is

obvious that when coverage probability is the same, a smaller width indicates that the

method is appropriate for the specific sample. In order to compare the performance of the

various intervals, the following criteria are considered: coverage probabilities (below,

cover and above), mean and SD of the widths of the resulting confidence intervals. The

Table 4.1: Coverage properties for N(3,1) distribution with skewness 0.

Sample Sizes

Approaches Measuring

Criteria

5 10 20 30 50 70 100

Exact Below rate

Cover rate

Over rate

Mean width

SD width

0.0230

0.9494

0.0276

2.1400

0.7807

0.0242

0.9492

0.0266

1.1113

0.2631

0.0230

0.9524

0.0246

0.6934

0.1129

0.0214

0.9554

0.0232

0.5427

0.0711

0.0250

0.9512

0.0238

0.4075

0.0412

0.0234

0.9544

0.0222

0.3413

0.0289

0.0276

0.9484

0.0240

0.2826

0.0202

Robust Below rate

Cover rate

Over rate

Mean width

SD width

0.1142

0.8098

0.0760

2.6107

1.4262

0.0634

0.9041

0.0352

1.2849

0.3828

0.0498

0.9160

0.0342

0.7810

0.1545

0.0376

0.9276

0.0348

0.6058

0.0940

0.0318

0.9388

0.0294

0.4528

0.0528

0.0306

0.9438

0.0256

0.3786

0.0367

0.0320

0.9402

0.0278

0.3134

0.0252

Bonett Below rate

Cover rate

Over rate

Mean width

SD width

0.4352

0.5292

0.0356

0.5073

0.1992

0.1918

0.7972

0.0110

0.6494

0.1835

0.0890

0.9060

0.0050

0.5901

0.1264

0.0594

0.9362

0.0044

0.5238

0.0954

0.0372

0.9582

0.0046

0.4327

0.0621

0.0290

0.9674

0.0036

0.3776

0.0464

0.0274

0.9678

0.0048

0.3222

0.0339

Non-para

Bootstrap

Below rate

Cover rate

Over rate

Mean width

SD width

0.0000

0.7728

0.2272

0.9662

0.3723

0.0000

0.7930

0.2070

0.7504

0.2312

0.0000

0.9998

0.0002

0.5589

0.1399

0.0000

1.0000

0.0000

0.4699

0.1035

0.0000

1.0000

0.0000

0.3727

0.0666

0.0000

1.0000

0.0000

0.3197

0.0497

0.0000

1.0000

0.0000

0.2695

0.0365

Parametric

Bootstrap

Below rate

Cover rate

Over rate

Mean width

SD width

0.0266

0.8472

0.1262

1.9244

0.7021

0.0000

0.9624

0.0376

3.4834

0.8246

0.0006

0.5398

0.4596

0.8099

0.1318

0.0024

0.8606

0.1370

0.6397

0.0838

0.0124

0.9730

0.0146

0.4608

0.0466

0.0036

0.5292

0.4672

0.2805

0.0238

0.0092

0.9758

0.0150

0.3289

0.0235

Robust

Bootstrap

Below rate

Cover rate

Over rate

Mean width

SD width

0.1104

0.7560

0.1336

2.7531

1.5039

0.0614

0.9002

0.0384

1.3338

0.3974

0.0470

0.9154

0.0376

0.7980

0.1578

0.0324

0.9290

0.0386

0.6210

0.0964

0.0290

0.9490

0.0220

0.4679

0.0546

0.0338

0.9372

0.0290

0.3667

0.0355

0.0328

0.9394

0.0278

0.3109

0.0250

CT Bootstrap Below rate

Cover rate

Over rate

Mean width

SD width

0.0654

0.9346

0.0000

0.9073

0.3310

0.0368

0.9632

0.0000

0.5657

0.1339

0.0010

0.9990

0.0000

0.3581

0.0583

0.0012

0.9988

0.0000

0.2655

0.0348

0.0002

0.9998

0.0000

0.1679

0.0170

0.0000

1.0000

0.0000

0.1343

0.0114

0.0000

1.0000

0.0000

0.1032

0.0074
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below and above rates of a confidence interval is the fraction out of 5000 samples that

resulted in an interval that lies entirely above and below the true value of the population

mean. The coverage probability is found as the sum of the lower rate and upper rate

and then subtracted from total probability 1. Simulation results are tabulated in Tables

4.1, 4.2 and 4.3 for normal, chi-square and log-normal distributions respectively. For

Table 4.2: Coverage properties for χ2
1 distribution with skewness 2.83.

Sample Sizes

Approaches Measuring

Criteria

5 10 20 30 50 70 100

Exact Below rate

Cover rate

Over rate

Mean width

SD width

0.2062

0.7084

0.0854

2.6007

1.9051

0.2494

0.6374

0.1132

1.4303

0.7663

0.2694

0.5922

0.1384

0.9242

0.3623

0.2762

0.5722

0.1516

0.7355

0.2407

0.2550

0.5714

0.1736

0.5671

0.1451

0.2562

0.5766

0.1672

0.4733

0.1028

0.2532

0.5640

0.1828

0.3952

0.0719

Robust Below rate

Cover rate

Over rate

Mean width

SD width

0.0260

0.5410

0.4330

1.8389

1.6597

0.0074

0.6018

0.3908

0.8986

0.5313

0.0002

0.8746

0.1252

0.4863

0.2027

0.0000

0.9672

0.0328

0.3592

0.1243

0.0000

0.9972

0.0028

0.2632

0.0693

0.0000

0.9994

0.0006

0.2132

0.0484

0.0000

1.0000

0.0000

0.1747

0.0335

Bonett Below rate

Cover rate

Over rate

Mean width

SD width

0.2888

0.6266

0.0846

0.6715

0.5506

0.4280

0.5186

0.0534

1.0754

0.7581

0.2906

0.6796

0.0298

1.1966

0.7435

0.2358

0.7388

0.0254

1.1636

0.6528

0.1634

0.8158

0.0208

1.0610

0.5057

0.1406

0.8436

0.0158

0.9628

0.4333

0.1160

0.8680

0.0160

0.8628

0.3485

Non-para

Bootstrap

Below rate

Cover rate

Over rate

Mean width

SD width

0.0110

0.9876

0.0014

1.2724

1.0062

0.0052

0.9948

0.0000

1.3299

0.9391

0.0002

0.9972

0.0026

1.2379

0.7437

0.0000

0.9966

0.0034

1.1433

0.6133

0.0000

0.9924

0.0076

1.0177

0.4682

0.0000

0.9454

0.0546

0.9143

0.3920

0.0000

0.6380

0.3620

0.8157

0.3163

Parametric

Bootstrap

Below rate

Cover rate

Over rate

Mean width

SD width

0.0472

0.6048

0.3480

5.9921

4.3895

0.0600

0.6202

0.3198

2.0968

1.1233

0.0030

0.6954

0.3016

3.1846

1.2484

0.0052

0.6602

0.3346

1.7225

0.5638

0.0002

0.9482

0.0516

1.5354

0.3927

0.0002

0.5050

0.4948

1.9256

0.4184

0.0400

0.7466

0.2134

0.7131

0.1298

Robust

Bootstrap

Below rate

Cover rate

Over rate

Mean width

SD width

0.0280

0.5300

0.4420

1.5955

1.4400

0.0082

0.5798

0.4120

0.8422

0.4979

0.0006

0.8400

0.1594

0.4538

0.1892

0.0000

0.9666

0.0334

0.3538

0.1224

0.0000

0.9964

0.0036

0.2615

0.0689

0.0000

0.9992

0.0008

0.2043

0.0464

0.0000

1.0000

0.0000

0.1739

0.0333

CT Bootstrap Below rate

Cover rate

Over rate

Mean width

SD width

0.0968

0.9032

0.0000

1.3284

0.9731

0.1190

0.8810

0.0000

0.7912

0.4239

0.1186

0.8814

0.0000

0.4827

0.1892

0.1674

0.8326

0.0000

0.3365

0.1102

0.1218

0.8782

0.0000

0.2444

0.0625

0.2750

0.7250

0.0000

0.1814

0.0394

0.1414

0.8586

0.0000

0.1402

0.0255
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all simulated distributions, we also provided the coverage probabilites in Table 4.4. For

more on the simulation techniques, we refer Baklizi and Kibria (2009) and Banik and

Kibria (2010a,b) and references therein.

Table 4.3: Coverage properties for the Lognormal (1.0,0.80) distribution with skewness 3.69.

Sample Sizes

Approaches Measuring

Criteria

5 10 20 30 50 70 100

Exact Below rate

Cover rate

Over rate

Mean width

SD width

0.1710

0.7568

0.0722

6.4430

4.8451

0.2600

0.6460

0.0940

3.4512

1.9012

0.3038

0.5640

0.1322

2.2911

1.0438

0.3280

0.5266

0.1454

1.8185

0.6992

0.3266

0.5124

0.1610

1.3942

0.4350

0.3494

0.4784

0.1722

1.1700

0.3197

0.3498

0.4720

0.1782

0.9744

0.2311

Robust Below rate

Cover rate

Over rate

Mean width

SD width

0.0268

0.7252

0.2480

5.6323

3.9645

0.0040

0.5714

0.4246

2.6675

1.0909

0.0002

0.7442

0.2556

1.5611

0.4237

0.0000

0.9086

0.0914

1.1971

0.2594

0.0000

0.9900

0.0100

0.8873

0.1436

0.0000

0.9986

0.0014

0.7353

0.1011

0.0000

1.0000

0.0000

0.6064

0.0684

Bonett Below rate

Cover rate

Over rate

Mean width

SD width

0.2620

0.6678

0.0702

1.6464

1.4319

0.4720

0.4852

0.0428

2.5439

1.9865

0.3510

0.6118

0.0372

2.9784

2.3489

0.3030

0.6688

0.0282

2.9380

2.1990

0.2406

0.7382

0.0212

2.7665

1.9159

0.2166

0.7660

0.0174

2.5728

1.6832

0.1816

0.8046

0.0138

2.3409

1.5210

Non-para

Bootstrap

Below rate

Cover rate

Over rate

Mean width

SD width

0.0312

0.9688

0.0000

3.0850

2.5675

0.1258

0.8742

0.0000

3.0532

2.3907

0.0200

0.9800

0.0000

3.0013

2.2831

0.0086

0.9914

0.0000

2.8159

1.9829

0.0078

0.9922

0.0000

2.5739

1.6510

0.0000

1.0000

0.0000

2.3781

1.4309

0.0002

0.9998

0.0000

2.1623

1.2690

Parametric

Bootstrap

Below rate

Cover rate

Over rate

Mean width

SD width

0.0082

0.8972

0.0946

20.3072

15.2710

0.0052

0.7640

0.2308

10.9107

6.0106

0.0038

0.7832

0.2130

6.9319

3.1581

0.2056

0.6352

0.1592

2.2693

0.8726

0.0014

0.6152

0.3834

4.2257

1.3183

0.0674

0.8756

0.0570

2.7495

0.7512

0.0056

0.9782

0.0162

3.6072

0.8555

Robust

Bootstrap

Below rate

Cover rate

Over rate

Mean width

SD width

0.0428

0.8148

0.1424

3.5183

2.4765

0.0062

0.6230

0.3708

2.2211

0.9083

0.0004

0.7108

0.2888

1.4099

0.3827

0.0000

0.8904

0.1096

1.1484

0.2488

0.0000

0.9870

0.0130

0.8495

0.1375

0.0000

0.9984

0.0016

0.7064

0.0971

0.0000

1.0000

0.0000

0.5978

0.0674

CT Bootstrap Below rate

Cover rate

Over rate

Mean width

SD width

0.3916

0.6084

0.0000

2.4976

1.8782

0.4424

0.5576

0.0000

1.6585

0.9137

0.2970

0.7030

0.0000

1.0762

0.4903

0.3686

0.6314

0.0000

0.8497

0.3267

0.1390

0.8610

0.0000

0.5779

0.1803

0.1400

0.8600

0.0000

0.4639

0.1267

0.0182

0.9818

0.0000

0.3291

0.0781
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Table 4.4: Coverage Probabilities for All Approaches and Distributions.

Distribution Approaches Sample Size (n)

5 10 20 30 50 70 100

Normal Exact

Robust

Bonett

NP-Boot

Par-Boot

Robust Boot

CT Boot

0.9494

0.8098

0.5292

0.7728

0.8472

0.7560

0.9346

0.9492

0.9041

0.7972

0.7930

0.9624

0.9002

0.9632

0.9525

0.9160

0.9060

0.9998

0.5398

0.9154

0.9990

0.9554

0.9276

0.9362

1.0000

0.8606

0.9290

0.9988

0.9512

0.9388

0.9582

1.0000

0.9730

0.9490

0.9998

0.9544

0.9438

0.9674

1.0000

0.5292

0.9372

1.0000

0.9484

0.9402

0.9678

1.0000

0.9758

0.9394

1.0000

χ
2
1 Exact

Robust

Bonett

NP-Boot

Par-Boot

Robust Boot

CT Boot

0.7084

0.5410

0.6266

0.9876

0.6048

0.5300

0.9032

0.6374

0.6018

0.5186

0.9948

0.6202

0.5798

0.8810

0.5922

0.8746

0.6796

0.9972

0.6954

0.8400

0.8814

0.5722

0.9672

0.7388

0.9966

0.6602

0.9666

0.8326

0.5714

0.9972

0.8158

0.9924

0.9482

0.9964

0.8782

0.5766

0.9994

0.8436

0.9454

0.5050

0.9992

0.7250

0.5640

1.0000

0.8680

0.6380

0.7466

1.0000

0.8586

Log-normal Exact

Robust

Bonett

NP-Boot

Par-Boot

Robust Boot

CT Boot

0.7568

0.7252

0.6678

0.9688

0.8972

0.8148

0.6084

0.6460

0.5714

0.4852

0.8742

0.7640

0.6230

0.5576

0.5640

0.7442

0.6118

0.9800

0.7832

0.7108

0.7030

0.5266

0.9086

0.6688

0.9914

0.6352

0.8904

0.6314

0.5124

0.9900

0.7382

0.9922

0.6152

0.9870

0.8610

0.4784

0.9986

0.7660

1.0000

0.8756

0.9984

0.8600

0.4720

1.0000

0.8046

0.9998

0.9782

1.0000

0.9818

4.2. Results discussion

The MATLAB programming language was used to run the simulation and to make the

necessary tables. The performance of the selected techniques in Section 3 for normal

distribution is examined first and the simulated results are tabulated in Table 4.1.

The results in Table 4.1 suggested that when sampling from a normal distribution,

the performance of the estimators do not differ greatly. However, for small sample sizes,

the exact method has coverage probability close to 0.95, followed by CT Bootstrap, the

proposed robust method, the robust bootstrap method and Bonnet performed the worse.

The parametric bootstrap method performed better than the non-parametric bootstrap

method for all sample sizes. When measuring criterion is average width, it is observed

that the CT bootstrap interval performed well as compare to others, followed by Bonett

and the non-parametric interval. The average width of the exact method is observed

closed to the proposed robust method.

The next simulation compares the performance of the proposed intervals for a

variety of non-normal distributions. Results are depicted for chi-square and log-normal

in Tables 4.2 and 4.3 respectively. The results in Table 4.2 and Table 4.3 suggested

that when sampling from a skewed distribution, the proposed robust method, Non-
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parametric bootstrap, robust bootstrap performed better compared to others in the sense

of coverage probability and average width. It is clear that the proposed robust method is

superior to the exact method when the data are from a non-normal population.

When the data are from normal distributions or sample sizes are large, the exact

method would be considered as it is easy to compute and has coverage probability

close to the nominal size compared to the rest. Since in real life the distributions of the

data are unknown or do not follow the normality assumption for most of the cases, our

proposed robust confidence interval would be recommended, as it does not required any

distributional assumption and is easy to compute compared to the bootstrap methods.

Even though some of the bootstrap methods are as good as our proposed robust method,

it is not advisable to use them as they are very computer intensive. However, for a

computer expert researcher, the non-parametric bootstrap method can be recommended.

5. Applications to real data

In this section, we will present some real life examples to illustrate the application and

the performance of the selected intervals.

5.1. Example 1

This example is taken from Hogg and Tanis (2001, page 359). The data set represents

the amount of butterfat in pounds produced by a typical cow during a 305-day milk

production period between her first and second calves. The butterfat production for

a random sample of size n = 20 cows measured by a farmer yielding the following

observations:

481,537,513,583,453,510,570,500,457,555

618,327,350,643,499,421,505,637,599,392

The sample mean, standard deviation and skewness of data are 507.5, 89.75 and

−0.3804 and respectively. Shapiro-Wilk Normality Test (W = 0.9667, p-value = 0.6834)

suggested that the data follow a normal distribution. The resulting 95% confidence

intervals for different methods and the corresponding confidence widths are given in

Table 5.1.

From Table 5.1, we observed that when the data under consideration has a normal

distribution, the confidence intervals widths for both exact and robust methods are

approximately the same, but as expected, the exact method provided the shortest

intervals widths among the two methods. From the above Table, we observed that

the non-parametric bootstrap interval has the narrowest width followed by the Bonett

interval. It is noted that the CT bootstrap has the widest width.
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Table 5.1: The 95% Confidence Intervals for the Butterfat Data.

Method 95% Confidence Interval Width

Exact (68.255,131.087) 62.832

Robust (63.261,129.137) 65.876

Bonett (63.910,114.789) 50.879

Non-para Bootstrap (62.515,106.951) 44.435

Parametric Bootstrap (74.656,130.790) 56.133

Robust Bootstrap (74.970,155.960) 80.989

CT Bootstrap (76.851,169.375) 92.523

5.2. Example 2

This example is taken from Weiss (2002, page 291). The data set represents the last

year’s chicken consumption in pounds for people on USA published by the USA

Department of Agriculture in Food Consumption, Prices, and Expenditures. The last

year’s chicken consumption, in pounds, for a random sample of size n = 17 people

yielded the following observations:

47,39,62,49,50,70,59,53,55,0,65,63,53,51,50,72,45

The sample mean, standard deviation and skewness of these data are 51.94, 16.08

and −2.11 respectively. Shapiro-Wilk Normality Test (W = 0.8013, p-value = 0.0021)

suggested that the data do not follow a normal distribution. The zero value may be a

recording error or due to a person in the random sample who does not eat chicken for

some reason (e.g., a vegetarian) and may be considered as an outlier. Now, if we remove

the outlier 0 pound from the sample data, the sample mean, standard deviation and

skewness of data are 55.19, 9.21 and 0.33 respectively. Shapiro-Wilk Normality Test

(W = 0.9651, p-value = 0.7539) suggested that the data follow a normal distribution.

The resulting 95% confidence intervals for different methods and the corresponding

confidence widths based on the two types of data are given in Table 5.2.

From Table 5.2, we observed that the non-parametric bootstrap interval has the

narrowest width followed by the Bonett interval. It is also noted that the CT bootstrap

has the widest width than others. From Table 5.2 it is also observed that when the

outlier is removed from the data, then the confidence interval for exact and robust

methods are very similar and approximately have the same interval width, although

the robust interval width is slightly shorter. The value of the outlier does not affect

so much the proposed robust confidence interval and therefore the exact confidence

interval for the population standard deviation, σ, should be avoided in the presence of

outliers. In general, an outlier should not be removed without careful consideration.

Simply removing an outlier because it is an outlier is unacceptable statistical practice.
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Table 5.2

Method 95% Confidence Interval Width

Original Data Abridged Data Original Data Abridged Data

Exact (11.978 , 24.478) (7.485 , 16.330) 12.50 8.845

Robust (6.804, 14.255) (5.193, 11.635) 7.451 6.442

Bonett (8.798,26.362) (6.396,11.813) 17.564 5.416

Non-para Bootstrap (6.789,23.977) (6.158,11.470) 17.188 5.311

Parametric Bootstrap (10.676,37.332) (7.506,13.971) 26.655 6.464

Robust Bootstrap (7.800,17.840) (6.398,13.991) 10.040 7.593

CT Bootstrap (16.374,40.284) (9.737, 18.698) 23.910 8.961

Also, our result if we had blindly finding a confidence interval without first examining

the data would have been invalid and misleading. In this case we can use the proposed

robust confidence interval which is resistant to outliers.

6. Concluding remarks

This paper proposes an approximate confidence interval for estimating the population

standard deviation, σ, based on a robust estimator and compares its performance

with other proposed intervals. A simulation study has been conducted to compare the

performance of the estimators, and shows that the proposed robust confidence interval

for all distributions considered performs well and had a good coverage probability

compared to the exact method especially for non-normal distributions. It appears that the

sample size (n) has significant effect on the proposed confidence interval. We observed

that if the population is really normal, the exact confidence interval for the population

standard deviation, σ, performs slightly better than the proposed robust method. If

the distribution is highly skewed, the coverage probability of the proposed robust

method becomes close to 1−α and improves as the sample size increases. Actually,

if the population is really non-normal, the exact confidence interval for the population

standard deviation, σ, can be arbitrarily bad. A single outlier makes it worse than

useless. To illustrate the findings of the paper we considered some real life examples

which also supported the simulation study to some extent. Finally, among all proposed

intervals, the robust, exact, non-parametric boot strap and CT bootstrap intervals are

promising and can be recommended for the practitioners. However, both exact and

proposed robust intervals are easy to compute and are not computer intensive.
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