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Abstract

In this paper, the exact form of the Fisher information matrix for the skew-generalized normal

(SGN) distribution is determined. The existence of singularity problems of this matrix for the skew-

normal and normal particular cases is investigated. Special attention is given to the asymptotic

properties of the MLEs under the skew-normality hypothesis.
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1. Introduction

Arellano-Valle, Gómez and Quintana (2004) introduced the skew-generalized-normal

(SGN) distribution with density

f (z;λ,α) = 2φ(z)Φ

(

λz√
1+αz2

)

, z ∈ R, λ ∈ R, α≥ 0, (1)

and denoted by SGN(λ,α), whereφ(·) and Φ(·) are the density function and cumulative

distribution function of the standardized normal distribution, respectively. The skewness

of the SGN distribution (1) is regulated by the parameters λ and α, so that it reduces
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Figure 1: Examples of the skew-generalized normal density.

to the skew-normal (SN) distribution when α= 0 and to the normal (N) one when λ= 0.

Note, however, that the value of α is irrelevant when λ= 0. The same occurs with λ for

the limiting case when α→ ∞. In both of these situations, the normality is attained from

the SGN model, producing there a local identifiability problem. Further special models

can also be obtained by reparametrizing α in terms of λ or viceversa. For example, by

making α = λ2 we obtain in (1) the so-called skew-curved normal (SCN) distribution

in Arellano-Valle et al. (2004). This flexibility of the SGN distribution allows to

incorporate a wide range of models in a neighbourhood of the normal distribution.

Figure 1 shows the behaviour of the SGN density for different values of the parameters

λ and α. Only positive values of λ are considered in the plots of Figure 1(a); when the

sign of λ is reversed, the density is reflected about the origin, as in Figure 1(b).

Further properties of the SGN model are investigated by Arellano-Valle et al. (2004).

In particular, they gave formulas for the moments of a SGN random variable, Z ∼
SGN(λ,α). They showed that the even moments of Z are equal to the corresponding

even moments of a standardized normal random variable. For the odd moments of Z,

they obtained expressions involving an implicit formula,

E(Z2k+1) = 2ck −2kΓ(1+ k)(2/π)1/2, k = 0,1,2, . . . ,

where ck := ck(λ,α) =
∫ ∞

0 ukφ(
√

u)Φ

(

λ
√

u√
1+αu

)

du. The location-scale extension of

the SGN distribution (1) was also obtained by Arellano-Valle et al. (2004) by letting

X = µ+σZ, where Z ∼ SGN(λ,α), and where µ ∈ R and σ > 0 are the location

and scale parameters, respectively. In this case, the notation X ∼ SGN(µ,σ,λ,α) will

be used. Finally, for the mean and variance of X ∼ SGN(µ,σ,λ,α) we can note that

E(X) =µ+σµz and Var(X) = (1−µ2
z )σ

2, where µz = 2c0−(2/π)1/2 is the mean of Z.
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The Fisher information matrix has an important role in statistical analysis (classical

and Bayesian) as well as in information theory. In the location-scale skew-normal dis-

tribution, however, the Fisher information matrix is singular (Azzalini, 1985) when the

skewness/shape parameter is zero, i.e., under the normality hypothesis. This fact vio-

lates the standard regularity conditions leading to the asymptotic normal distribution of

the MLEs. A situation of this type falls under nonstandard asymptotic theory studied by

Rotnitzky et al. (2000), who showed that in these circumstances the rate of convergence

estimate is slower than the usual one. Motivated by this fact, we consider it important to

obtain and analyse the behaviour of the Fisher information matrix in an generalization

of the skew-normal distribution.

In this note, we determine the exact form of the Fisher information matrix for

the skew-generalized-normal (SGN) distribution. Next, we examine the existence of

singularity problems of this matrix for the skew-normal and normal special cases, giving

a special attention to the asymptotic properties of the MLEs under the skew-normality

hypothesis (λ= 0).

This paper is organized as follows. The elements of the expected information matrix

for the full location-scale SGN model are derived in Section 2. Solutions for the

singularity problems in the full information matrix for the normal particular cases are

also discussed there. The technical details are given in an Appendix.

2. Maximum likelihood estimation

This section is related to the asymptotic properties of the MLEs of the location-scale

SGN model. Specifically, the ingredients to compute the expected information matrix

for the full location-scale SGN model are given. Hence, the study is focused on the

asymptotic behaviour of the MLEs for the particular skew-normal and normal models.

2.1. Likelihood score functions

Let X1, . . . ,Xn be a random sample drawn from the SGN(µ,σ,λ,α) distribution. The

log-likelihood function for θ = (µ,σ,λ,α)⊤ is ∑
n
i=1 l(θ ,Xi), where l(θ ,X) is the log-

likelihood for θ based on a single observation X , that is,

l(θ ,X) := log f (X ;θ ) =
1

2
log

(

2

π

)

− log(σ)− Z2

2
+ logΦ(W ), (2)

where Z = (X − µ)/σ and W = W (Z) = λZ/(1 + αZ2)1/2. The score function is

∑
n
i=1 Sθ (θ ,Xi), where Sθ (θ ,X) = ∂ l(θ ,X)/∂θ is the vector (Sµ,Sσ,Sλ,Sα)

⊤ with

elements

Sµ =
Z

σ
− 1

σ

φ(W )

Φ(W )

∂W

∂Z
, Sσ =− 1

σ
+

Z2

σ
− 1

σ

φ(W )

Φ(W )

∂W

∂Z
Z,
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Sλ =
φ(W )

Φ(W )

∂W

∂λ
and Sα =

φ(W )

Φ(W )

∂W

∂α
,

where ∂W/∂Z =λ/(1+αZ2)3/2, ∂W/∂λ= Z/(1+αZ2)1/2 and ∂W/∂α=−λZ3/2(1+

αZ2)3/2.

2.2. Fisher information matrix

By definition, the SGN-expected information matrix for θ can be computed as Iθ =

E[SθS
⊤
θ ], where Sθ is the SGN-score vector above. Thus, the elements Iθiθ j

= E[Sθi
S
⊤
θ j
]

of this matrix are shown in the Appendix to be

Iµµ =
1

σ2
+
λ2

σ2
η03, Iµσ =

2

σ2
(c1 − c0)−

(2/π)1/2

σ2
− 2λ

σ2
ρ23 +

λ

σ2
ρ03 +

λ2

σ2
η13,

Iµλ =
1

σ
ρ21 −

λ

σ
η12, Iµα =− λ

2σ
ρ43 +

λ2

2σ
η33, Iσσ =

2

σ2
+
λ2

σ2
η23,

Iσλ =−λ
σ
η22, Iσα =

λ2

2σ
η43, Iλλ = η21, Iλα =−λ

2
η42 and Iαα =

λ2

4
η63,

where the coefficients ρnm and ηnm are defined in Proposition 1 given in the Appendix.

These coefficients must be computed numerically.

For the nonnormal cases with λ 6= 0 and 0 ≤ α< ∞, the above information matrix is

always nonsingular, so that the usual
√

n-asymptotic behaviour holds for the MLEs. In

particular, estimation of the standard errors of the parameter estimates can be taken from

the diagonal elements of the inverse Fisher information matrix. Moreover, the submatrix

of the full information matrix corresponding to the vector of parameters (µ,σ,λ)⊤

coincides with the SN-information matrix obtained by Azzalini (1985). In addition, for

the skew-normal special case with α = 0, the full associated information matrix is also

nonsingular. See Section 2.3 below.

For the normal case that follows when λ = 0, the information matrix of θ =

(µ,σ,λ,α)⊤ is













1

σ2 0
2(2/π)1/2

σ
d1(α) 0

2

σ2 0 0
2
π

d2(α) 0

0













,

where d1(α) =
∫ ∞

0
z2φ(z)

(1+αz2)1/2 dz and d2(α) =
1
α

(

1− (2π/α)1/2e
1

2αΦ(−α−1/2)
)

(see Co-

rollary 1 in the Appendix). Although the first three columns of this matrix are linearly
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independent, it leads to a singular information matrix because of a final column (cor-

responding to the parameter α) of 0s. This fact is obvious from (1), since α is non-

identifiable when λ = 0. Properties of the MLEs when the SGN model reduces to the

normal case are considered in Section 2.4.

2.3. Properties of the MLEs in the skew-normal case

Suppose that the parameter vector is θ ∗ = (µ∗,σ∗,λ∗,0)⊤, that is, the data are drawn

from the SN(µ∗,σ∗,λ∗) distribution. At θ = θ ∗, the components of the score vector Sθ
are

S∗
µ =

1

σ∗

[

Z∗−λ∗ φ(λ
∗Z∗)

Φ(λ∗Z∗)

]

, S∗
σ =

1

σ∗

[

Z∗2 −1−λ∗ φ(λ
∗Z∗)

Φ(λ∗Z∗)
Z∗
]

,

S∗
λ =
φ(λ∗Z∗)

Φ(λ∗Z∗)
Z∗ and S∗

α =−λ
∗

2

φ(λ∗Z∗)

Φ(λ∗Z∗)
Z∗3

,

where Z∗ = (X −µ∗)/σ∗. Linear dependence does not exist between the elements of
the score function when λ∗ 6= 0. Consequently, the information matrix is not singular in

this case. In the full parameter case, the vector n1/2(µ̂−µ∗, σ̂−σ∗, λ̂−λ∗, α̂), where

(µ̂, σ̂, λ̂, α̂) is the MLE of (µ,σ,λ,α), converges in distribution to (Y1,Y2,Y3,Y4), where

(Y1,Y2,Y3,Y4)
⊤ is a multivariate normal random vector with mean vector (0,0,0,0)⊤ and

covariance matrix



















1
σ2 (1+λ

2a0)
1
σ2

(

λ(2/π)1/2(1+2λ2)
(1+λ2)3/2 +λ2a1

)

1
σ

(

(2/π)1/2

(1+λ2)3/2 −λa1

)

1
2σ

(

− 3λ(2/π)1/2

(1+λ2)5/2 +λ2a3

)

1
σ2 (2+λ

2a2) − λσa2
λ2

2σa4

a2 −λ2 a4

λ2

4 a6



















−1

where ak := ak(λ)=
1
π

∫ ∞
0 zkφ(

√
1+2λ2 z)

[

(−1)k

Φ(−λz) +
1

Φ(λz)

]

dz for k= 0,1,3,4,6, which

have to be evaluated numerically (see Proposition 2 in the Appendix).

2.4. Properties of the MLEs in the normal case

Suppose now that the parameter vector is θ ∗ = (µ∗,σ∗,0,α∗)⊤, that is, the data are

obtained from a N(µ∗,σ∗2
) distribution. At θ = θ ∗, the components of Sθ are

S∗
µ =

Z∗

σ∗ , S∗
σ =

Z∗2 −1

σ∗ , S∗
λ =

(2/π)1/2 Z∗

(1+α∗ Z∗2)1/2
and S∗

α = 0,

where Z∗ = (X −µ∗)/σ∗.
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In this case, the components of (S∗
µ,S

∗
σ,S

∗
λ) are linearly independent at least that

α∗ = 0, and so the singularity of the information matrix of θ ∗ is due to the fact that

S∗
α = 0. Moreover, the score component of interest S∗

λ cannot be expressed as a linear

combination of the components of (S∗
µ,S

∗
σ,S

∗
α), that is, there is not a vector c 6= 0

of constants such that S∗
λ = c⊤(S∗

µ,S
∗
σ,S

∗
α)

⊤, and so the condition (28) considered by

Rotnitzky et al. (2000) is not satisfied. Consequently, the methodology proposed by

these authors cannot be applied to study the asymptotic properties of the MLEs in the

normal case (λ = 0), since there is no vector c 6= (0,0,0,0)⊤ to initialize the iterative

process in order to obtain an appropriate reparametrization for which the information

matrix is of full rank. As was mentioned above, this conclusion derives from the fact

that α is non-identifiable when λ= 0.

If, in addition, α∗ = 0, i.e., θ ∗ = (µ∗,σ∗,0,0)⊤, we then find in the above score

functions the relation S∗
λ = (2/π)1/2σ∗S∗

µ. Hence, at θ ∗ the full information matrix has

rank 2, which violates the condition (27) of Rotnitzky et al. (2000).

A similar fact occurs whenα→∞, which is another form to obtain the normal model.

That is, for θ ∗ = (µ∗,σ∗,λ∗,∞)⊤, we have whatever the value of λ∗ that S∗
µ and S∗

σ are

as before, but S∗
λ= S∗

α= 0. Therefore, again the the methodology proposed by Rotnitzky

et al. (2000) is not appropriated to study the asymptotic properties of the MLEs in the

normal case.

However, if the objective is to study the normality hypothesis only, then a natural

and convenient strategy is the following:

a) Use the SGN model to test the skew-normality hypothesis α= 0 (see Section 2.3).

b) If the skew-normal model is not rejected, then use this model to test the normality

hypothesis λ = 0. In this case, the Rotnitzky et al. (2000) methodology (see

Chiogna, 2005) as well as the centred parametrization (see Azzalini, 1985) can

be used.
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1120121|1090411. The work of H. W. Gómez was supported by Grant FONDECYT

(Chile) 1090411 and the work of H. S. Salinas was supported by Grant DIUDA (Chile)

221229. The authors thank the editor and two referees whose constructive comments led

to a far improved presentation.

Appendix

This appendix provides preliminary calculations needed to derive the elements of the

SGN expected information matrix. To simplify the notation, let W :=W (Z) = λZ√
1+αZ2

and R = R(W ) = φ(W )
Φ(W ) , where Z ∼ SGN(λ,α).
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Proposition 1 Let ρnm = EZ

(

ZnR

(1+αZ2)m/2

)

and ηnm = EZ

(

ZnR2

(1+αZ2)m

)

, n,m = 0,1, . . .,

where Z ∼ SGN(λ,α). Then,

ρnm =

{

0, f or n = 2k+1 (odd),

EY

(

2Y 2kφ(W (Y ))

(1+αY 2)m/2

)

, f or n = 2k (even),

and

ηnm = EY

([

(−1)n

Φ(−W (Y ))
+

1

Φ(W (Y ))

]

Y nφ2(W (Y ))

(1+αY 2)m

)

,

where Y ∼ 2φ(y)I(y ≥ 0).

Proof: For n = 2k+1, we have after a simple algebra that

ρnm = 2

∫ ∞

−∞

z2k+1φ(z)

(1+αz2)m/2
φ

(

λz√
1+αz2

)

dz = 2

∫ ∞

−∞

zh0(z)dz = 0,

since for all k,m = 0,1, . . ., the function h0(z) =
z2kφ(z)

(1+αz2)m/2φ

(

λz√
1+αz2

)

is even. Simi-

larly, for n = 2k, we have

ρnm = 2

∫ ∞

−∞

z2kφ(z)

(1+αz2)m/2
φ

(

λz√
1+αz2

)

dz

= 2

∫ ∞

0

2y2kφ(y)

(1+αy2)m/2
φ

(

λy
√

1+αy2

)

dy = 2EY

(

Y 2kφ(W (Y ))

(1+αY 2)m/2

)

.

Finally, for ηnm we have

ηnm = 2

∫ ∞

−∞

znφ(z)

(1+αz2)m

φ2

(

λz√
1+αz2

)

Φ

(

λz√
1+αz2

) dz

= 2

∫ ∞

0

(−y)n

Φ

(

−λy√
1+αy2

)h1(y)dy+2

∫ ∞

0

yn

Φ

(

λy√
1+αy2

)h1(y)dy

= 2

∫ ∞

0

[

(−1)n

Φ(−W (y))
+

1

Φ(W (y))

]

ynφ2(W (y))

(1+αy2)m
φ(y)dy

= EY

([

(−1)n

Φ(−W (Y ))
+

1

Φ(W (Y ))

]

Y nφ2(W (Y ))

(1+αY 2)m

)

,
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where it is used that the function h1(t) =
φ2(W (t))φ(t)

(1+αt2)m is even for all m = 0,1, . . .;

concluding thus the proof.

From Proposition 1 we have, after some straightforward algebra, that the entries

Iθiθ j
= E(Sθi

Sθ j
) of the information matrix Iθ are as follows:

Iµµ = E

(

Z2

σ2
− 2λZR

σ2(1+αZ2)3/2
+

λ2R2

σ2(1+αZ2)3

)

=
1

σ2
+
λ2

σ2
η03,

Iµσ = E

(

− Z

σ2
+

Z3

σ2
− 2λZ2R

σ2(1+αZ2)3/2
+

λR

σ2(1+αZ2)3/2
+

λ2ZR2

σ2(1+αZ2)3

)

=
2

σ2
(c1 − c0)−

(2/π)1/2

σ2
− 2λ

σ2
ρ23 +

λ

σ2
ρ03 +

λ2

σ2
η13,

Iµλ = E

(

Z2R

σ(1+αZ2)1/2
− λZR2

σ(1+αZ2)2

)

=
1

σ
ρ21 −

λ

σ
η12,

Iµα = E

(

− λZ4R

2σ(1+αZ2)3/2
+

λ2Z3R2

2σ(1+αZ2)3

)

=− λ
2σ
ρ43 +

λ2

2σ
η33,

Iσσ = E

(

1

σ2
− 2Z2

σ2
+

2λZR

σ2(1+αZ2)3/2
+

Z4

σ2
− 2λZ3R

σ2(1+αZ2)3/2
+

λ2Z2R2

σ2(1+αZ2)3

)

=
1

σ2
− 2

σ2
+

3

σ2
+
λ2

σ2
η23 =

2

σ2
+
λ2

σ2
η23,

Iσλ = E

(

− ZR

σ(1+αZ2)1/2
+

Z3R

σ(1+αZ2)1/2
− λZ2R2

σ(1+αZ2)2

)

=−λ
σ
η22,

Iσα = E

(

λZ3R

2σ(1+αZ2)3/2
− λZ5R

2σ(1+αZ2)3/2
+

λ2Z4R2

2σ(1+αZ2)3

)

=
λ2

2σ
η43,

Iλλ = E

(

Z2R2

(1+αZ2)

)

= η21,

Iλα = E

(

− λZ4R2

2(1+αZ2)2

)

=−λ
2
η42,

Iαα = E

(

λ2Z6R2

4(1+αZ2)3

)

=
λ2

4
η63.
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Corollary 1 If λ = 0, then the entries Iµλ and Iλλ of the information matrix Iθ reduce

to

Iµλ =
2(2/π)1/2

σ
d1(α) and Iλλ =

2

π
d2(α), (3)

where d1(α) =
∫ ∞

0
z2φ(z)

(1+αz2)1/2 dz and d2(α) =
1
α

(

1− (2π/α)1/2e
1

2αΦ(−α−1/2)
)

.

Proof: In fact, if λ= 0, then W ≡ 0, and so R≡ (2/π)1/2. Thus, Iµλ=
1
σ

E
(

Z2

(1+αZ2)1/2 R
)

= (2/π)1/2

σ

∫ ∞
−∞

z2φ(z)

(1+αz2)1/2 dz= 2(2/π)1/2

σ

∫ ∞
0

z2φ(z)

(1+αz2)1/2 dz since the function
z2φ(z)

(1+αz2)1/2 is even.

Note that this integral has be computed numerically when α > 0. For Iλλ we have

Iλλ = E
(

Z2

1+αZ2 R2
)

= 2
π

∫ ∞
−∞

z2φ(z)

1+αz2 dz = 4
π

∫ ∞
0

z2φ(z)

1+αz2 dz since that function
z2φ(z)

1+αz2 is even.

Hence, the result follows by noting from Mathematica (Wolfram Research, 2008) that

d2(α) := 2

∫ ∞

0

z2φ(z)

1+αz2
dz =

1

α
−

(π/2)1/2e
1

2α (1− erf(
√

2
2
√
α
))

α3/2
,

for α> 0, where erf
(√

2
2

t
)

= 2Φ(t)−1.

Proposition 2 Let Z ∼ SGN(λ,0). Then

ak(λ) := EZ

(

Zk

{

φ(λZ)

Φ(λZ)

}2
)

=
1

π

∫ ∞

0
zkφ(

√

1+2λ2 z)

[

(−1)k

Φ(−λz)
+

1

Φ(λz)

]

dz.

Proof: Since φ2(λz)φ(z) = 1
2π
φ(

√
1+2λ2 z) we have after a simple algebra that

EZ

(

Zk

{

φ(λZ)

Φ(λZ)

}2
)

= 2

∫ ∞

−∞

zkφ2(λz)φ(z)

Φ(λz)
dz

=
1

π

∫ ∞

−∞

zkφ(
√

1+2λ2 z)

Φ(λz)
dz

=
1

π

∫ ∞

0
zkφ(

√

1+2λ2 z)

[

(−1)k

Φ(−λz)
+

1

Φ(λz)

]

dz.
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