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Selection and pattern mixture models for

modelling longitudinal data with dropout:

An application study

A. Satty and H. Mwambi∗

Abstract

Incomplete data are unavoidable in studies that involve data measured or observed longitudinally

on individuals, regardless of how well they are designed. Dropout can potentially cause serious

bias problems in the analysis of longitudinal data. In the presence of dropout, an appropriate

strategy for analyzing such data would require the definition of a joint model for dropout and

measurement processes. This paper is primarily concerned with selection and pattern mixture

models as modelling frameworks that could be used for sensitivity analysis to jointly model the

distribution for the dropout process and the longitudinal measurement process. We demonstrate

the application of these models for handling dropout in longitudinal data where the dependent

variable is missing across time. We restrict attention to the situation in which outcomes are

continuous. The primary objectives are to investigate the potential influence that dropout might

have or exert on the dependent measurement process based on the considered data as well as

to deal with incomplete sequences. We apply the methods to a data set arising from a serum

cholesterol study. The results obtained from these methods are then compared to help gain

additional insight into the serum cholesterol data and assess sensitivity of the assumptions made.

Results showed that additional confidence in the findings was gained as both models led to similar

results when assessing significant effects, such as marginal treatment effects.
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1. Introduction

In most longitudinal studies where data are collected over a sequence of time points,

missing data are caused by individuals dropping out of the study prior to the time
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at which the primary endpoint data would be collected. Missingness for longitudinal

data often occurs as dropout that is a particular case of missing data. Furthermore,

the resulting data obtained from such studies would have a particular type of missing

data pattern; that is, a monotone missingness pattern, in which if an individual has

missing values for a given time, no data can be obtained for all subsequent times for

that individual. In this paper, our focus will be on this type of missing data pattern.

Other types of missingness patterns are possible, such as intermittent missingness, but

we focus on dropout which occurs most often in longitudinal studies. The mechanisms

that lead to missing data are varied. Rubin (1976) and Little and Rubin (1987) classified

these mechanisms into three possible categories, namely data missing completely at

random, at random, or not at random. For longitudinal data, when data are missed

at random or completely at random, available cases analysis, such as mixed models

can be used. In contrast, when data are missed not at random, then using a standard

mixed model without accounting for the missingness may lead to biased and inconsistent

assessment of study results. Standard strategies of analysis currently assess non-random

dropout by performing sensitivity analysis using analytical methods that incorporate

non-random dropout in longitudinal data with and without a non-random component.

Common families of models for data that are subject to dropout are selection and pattern

mixture models.

Selection and pattern mixture models are two alternative and important approaches

for dealing with longitudinal data when there are dropouts. They make empirically un-

verifiable assumptions and require extra constraints to identify the parameter estimates.

Both models differ in the way the joint distribution of the measurement and dropout pro-

cesses are factorized. However, other models that drive both the measurement process

and dropout process, such shared-parameter models by Wu and Carrol (1988) and Wu

and Bailey (1988, 1989) are also available. We restrict ourselves to the selection and pat-

tern mixture models with dropout that falls under the monotone missing data pattern. A

selection model factors the joint distribution into the marginal measurement model that

describes the distribution of the complete measurements, and the dropout model that

describes the conditional distribution of the dropout indicators, given the observed and

unobserved measurements (Diggle and Kenward, 1994). However, in many discussions,

for example, Diggle and Kenward (1994), Verbeke and Molenberghs (2000) and Molen-

berghs and Verbeke (2005), the conclusions obtained from selection models depend on

the assumptions made some of which cannot be investigated from the data under anal-

ysis. Early reference to such models is found in Heckman (1976) in the econometrics

area. The use of pattern mixture models, on the other hand, was originally proposed by

Little (1993, 1994) as a viable alternative to selection models. In this approach, models

are under-identified; that is, for each dropout pattern the observed data does not provide

direct information to identify the distributions for the incomplete patterns. Therefore,

to overcome this problem, Little (1993, 1994) solves the under-identification problem

through the use of identifying restrictions. Early applications concerning selection and

pattern mixture models can be found in Marini et al. (1980) and Glynn et al. (1986).
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Selection and pattern mixture models are somewhat opposite to each other. That is,

these models exploit the conditional probability rule, but they do so in opposite ways.

The marginal estimates in selection models can be derived directly, while pattern mix-

ture models estimate the marginal parameters as a weighted average through pattern

specific estimates (Little, 1995).

There are several studies in the literature which provide a comprehensive review of

these models. The differences between selection models and pattern mixture models

have been discussed in many works, for example, Glynn et al. (1986) and Little (1993,

1994). Little (1995) also made an important distinction between selection and pattern

mixture models. A comparison of the conclusions based on the selection model with

those based on the pattern mixture models have been discussed in Verbeke et al. (2001)

and Michiels et al. (2002). Molenberghs et al. (1998a) contrast selection and pattern

mixture models. Further discussion of these models can be found in McArdle and

Hamagami (1992), Little and Wang (1996), Hedeker and Gibbons (1997), Hogan and

Laird (1997), Kenward and Molenberghs (1999), Verbeke and Molenberghs (2000),

Molenberghs and Verbeke (2005), Molenberghs and Kenward (2007) and Daniels and

Hogan (2008). However, the approach by Daniels and Hogan (2008) is Bayesian based,

which is not the focus of the current study.

This paper is primarily concerned with two attractive modelling frameworks to ac-

count for non-random dropout, namely selection and pattern mixture models. We demon-

strate the application of selection and pattern mixture models for handling dropout

in longitudinal data where the dependent variable is missing across time. In particu-

lar, we illustrate the application and results of analysis with these models. The under-

identification in pattern mixture models is addressed through identifying restrictions,

while the use of the selection model is based on Diggle and Kenward’s (1994) model.

We restrict our attention to the situation in which linear models are used and the out-

comes are continuous. The primary objectives are to investigate the potential influence

that dropout might exert on the dependent measurement on the considered data as well

as how to deal with incomplete sequences. We relate the identified restrictions estimates

using a pattern mixture model framework to their corresponding estimates using a se-

lection model framework. We apply the methods to a data set arising from a serum

cholesterol study. Section 2 describes the notation and general concepts based on the

selection and pattern mixture models. In Section 3, we give a discussion of the two

families of models that are used in the analysis, namely selection and pattern mixture

models. An application study is provided in Section 4 including the description of the

serum cholesterol data to which our methods will be applied. In addition, full analysis

and results of the application is also given. Section 5 presents concluding remarks and

discussion.
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2. Notation and concepts

We introduce modelling incompleteness notation which is largely due to Rubin (1976)

and Little and Rubin (1987). Let yi j be the response of interest, for the ith study subject,

where i = 1, . . . ,N, designed to be measured at occasion t j, where j = 1, . . . ,n. In other

words, the original intention was to have n observations per individual. However, due

to dropout some individuals end up contributing less than n intended observations.

Therefore, generally, we can assume that the ith individual is actually observed ni

times. For subject i and occasion j, define Ri j=1, if yi j is observed, and 0, if not. We

split yi j into two sub-vectors, yo
i and ym

i , representing those yi j for which Ri j=1, and

Ri j=0, respectively. In addition, suppose the missing data occur due to dropout, then the

measurements for each subject can be recorded up to a certain time point, after which all

data are unobserved. In this case, a dropout indicator can then be defined as Di, given by

Di = 1+∑
n
j=1 Ri j, denoting the occasion at which dropout first occurs. In modelling a

missing data process, it is often necessary to consider a joint model for the measurement

process together with the dropout process. Therefore, we assume the full data density is

given by

f (yi,ri | Xi,Zi,θ ,ψ), (1)

where Xi denotes the design matrix for fixed effects, Zi denotes the design matrix for

random effects, while θ and ψ represent the vectors of parametrization for the joint

distribution. In considering the above model in expression (1), we can factorize this

joint density function in two possible ways that can facilitate modelling. Specifically, the

selection and pattern mixture models mentioned earlier are defined by the conditional

factorizations of the joint distribution of Y and R, and both are discussed in more detail

in Little (1995) and stated briefly below. A selection model is based on the following

factorization

f (yi,ri | Xi,Zi,θ ,ψ) = f (yi | Xi,Zi,θ ) f (ri | yi,Xi,ψ), (2)

where the first factor in the above factorization represents the marginal density of the

measurement process, while the second factor represents the density of the dropout

process, conditional on the measurements. An alternative factorization based on the

pattern mixture models (Little 1993, 1994) is of the form

f (yi,ri | Xi,Zi,θ ,ψ) = f (yi | ri,Xi,Zi,θ ) f (ri | Xi,ψ). (3)

This factorized density (3) can be seen as a mixture of the conditional distributions,

and the model for the measurements depends on the particular missing data pattern.

An excellent review of these models is given in Glynn et al. (1986), Little and Rubin

(1987), Little (1993, 1994), Hogan and Laird (1997) and Ekholm and Skinner (1998).
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The missing data processes have been developed by Rubin (1976) and Little and Rubin

(1987) through the selection model framework. They make distinctions among different

missing data processes. These processes can be formulated based on the second factor

of model (2), i.e,

f (ri | yi,Xi,ψ) = f (ri | yo
i ,y

m
i ,Xi,ψ). (4)

Thus, if the distribution of missingness process is reduced to f (ri | yi,Xi,ψ)= f (ri,Xi,ψ),

i.e., the process is independent of the measurements, then the process is defined as

missing completely at random (MCAR). If the missingness probability depends on

the observed measurement yo
i , but not on the unobserved measurements ym

i , i.e, f (ri |

yi,Xi,ψ) = f (ri | yo
i ,Xi,ψ), then the process is termed missing at random (MAR). Fi-

nally, data are missing not at random (MNAR) or exhibiting an informative process,

when the missingness probability depends on the unobserved measurement, ym
i , and

possibly on the observed measurement, yo
i , i.e., f (ri | yi,Xi,ψ) = f (ri | yo

i ,y
m
i ,Xi,ψ). In

other words, an informative process in expression (4) cannot be reduced.

3. Selection and pattern mixture models for modelling dropout

We consider the comparison between the selection and pattern mixture models con-

cerning the significant characteristics, such as marginal treatment effects since such a

comparison is a useful form of a sensitivity analysis. Specifically, we are interested in

parametric selection and pattern-mixture models for modelling dropout. In the follow-

ing, we briefly review these models.

3.1. Selection model

As mentioned above, a selection model factors the joint distribution into two parts: the

marginal measurement model that describes the distribution of the complete measure-

ments and the missingness model that describes the conditional distribution of the re-

sponse indicators given the observed and unobserved measurements. In other words, in

a selection model, we first specify a distribution for the measurement, then propose a

manner in which the probability of being observed depends on the data. For continuous

outcomes, using a selection model formulation as in equation (2), Diggle and Kenward

(1994) combine the multivariate Gaussian linear model together with the dropout model.

Similarly, we consider the measurement model to be of the linear mixed effects model

(Laird and Ware, 1982). Recall that yi j is the response of interest for the ith study sub-

ject, where i = 1, . . . ,N, at time point j, where j = 1, . . . ,ni. More generally, the model

for yi the (ni ×1) vector of responses for the ith subject can be written as
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yi = Xiβ+Zibi + ǫi, (5)

where Xi and Zi are known (ni × p) and (ni × q) design matrices for fixed and random

effects, respectively, β is the (p×1) vector of fixed effects, bi is the (q×1) vector of the

random effects distributed as N(0,G), ǫi is the (ni×1) vector of the residual components

distributed independently as N(0,Σi), G is the general (q× q) covariance matrix with

(i, j)th element di j = d ji andΣi is the (ni×ni) error covariance matrix. Then, marginally,

the responses yi are distributed as independent normal yi ∼ N(Xiβ ,ZiGZT
i +Σi). Here,

Σi = σ
2Hi + τ

2I, where σ2 denotes the variance of the serially correlated process,

Hi = (h jk) = (ρ(t j, tk)) denotes the associated correlation matrix, τ2 pertains to the

measurement error variability and I is a (ni ×ni) identity matrix.

We assume the missingness is due to dropout only, and that the first measurement

yi1 is observed for each individual. Again, recall that Di was defined as the dropout

indicator which denote the occasion at which dropout first occurs. Now, let Di = di

identify the dropout time for subject i, where Di = n+1, if the sequence of measurement

is complete. Therefore, the selection models introduced in equation (2) arise when the

joint likelihood of the measurement and dropout processes is factorized as following

f (yi,Di | Xi,Zi,θ ,ψ) = f (yi,Di | Xi,Zi,θ ) f (di | yi,ψ).

The model for dropout process is based on a logistic regression for the probability of

dropout at occasion j, given the subject was still in the study at the previous occasion.

Let gi(yi j,hi j) denote this probability, where hi j represent the history of the measurement

process. Thus, one can assume that gi(yi j,hi j) satisfies the model

logit[g(hi j,yi j)] = logit[p(Di = j | Di ≥ j,hi j,yi j)] = η(hi j,yi j), (6)

where η(hi j,yi j) is the linear predictor depending on hi j and yi j. Modelling the dropout

mechanism may be simplified in the expression in equation (6) by assuming η(hi j,yi j)

depends only on the current measurement and the previous measurement yi j−1, but

not on future measurements or higher order history, with corresponding regression

coefficients, ψ1 and ψ2. Dependence on future unobserved measurements is not easy

to justify therefore it is not modelled here. Higher order history can be included, but we

assume first order history for simplicity. This leads to the following logistic expression

logit[g(yi, j−1,yi j)] = logit[p(Di = j | yi, j−1,yi j)] =ψ0 +ψ1yi, j−1 +ψ2yi j. (7)

Note that the linear predictor in equation (7) may depend on other covariates but in

the current model we only include the constant ψ0. According to Little and Rubin’s

(1987) terminology introduced in the previous section, and based on the expression in

equation (7), it is clear that when both parametersψ1 andψ2 are equal to 0, the dropout
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mechanism should be MCAR. However, when ψ1 is not equal to 0, but ψ2 equal to

0, the dropout mechanism is referred to as MAR, and finally, when ψ2 is not equal to

0, dropout mechanism is referred to as MNAR. Here, we note that a likelihood ratio

test (LRT) can be used to compare model fit under a model that assumes the missing

data due to dropout are MCAR versus MAR (Diggle and Kenward, 1994). The LRT

test statistic follows a null asymptotic χ2
1 distribution. See, Diggle and Kenward (1994)

and Molenberghs et al. (1997) for details on the derivation of this statistic. When the

LRT test statistic is significant, then it suggests that the least restrictive of the two

models is preferred; that is, the model that assumes the dropout is MAR. However,

based on the argument of Jansen et al. (2006), we restate that the test for MAR against

MNAR is not recommended using the LRT statistic via a model based on the Diggle

and Kenward’s (1994) type. This is because the behaviour of the LRT statistic for

the MNAR parameter ψ2 is non-standard since the availability of the information on

ψ2 is very rare and interwoven with other features of both measurement and dropout

models (Jansen et al., 2006). This is specially true when one considers the model

based on Diggle and Kenward type, but it is important to realize that their tests are

conditional on the alternative model holding. According to Kenward (1998), such a

distinction, between a MAR mechanism or a MNAR mechanism, can only be made

using untestable modeling assumptions, such as the distributional form. Molenberghs

and Kenward (2007) stated that the assumption giving arise to the dropout in a sample

cannot be verified by the observed measurements and any test regarding the dropout

process can be invalidated. This can be justified by the fact that parameters of the

dropout model are dependent in part on dropout. Furthermore, unless one puts a priori

belief in the posited MNAR model, the distinction (MAR/MNAR) is not possible, due

to the fact that for any dropout model that assumes dropout are MNAR, there is a MAR

model that provides exactly the same fit to the data, but the two models differ in the

prediction of what is unobserved (Molenberghs et al., 2008). This problem of model

identifiability poses a major complication when considering models for the dropout

mechanism. Thus, one recommendation is to conduct a sensitivity analysis of the

parameters of the measurement model across models that make different assumptions

about the dropout process (see, Molenberghs and Kenward, 2007). Therefore, although

the dropout process cannot be known via empirical examination, the analysis can be

carried out to study differences in parameters estimates of the measurement process

across varying assumptions about the dropout.

3.2. Pattern mixture model

Now, we shift our attention to the pattern mixture models that stratify subjects according

to their missingness pattern. Under these models, the thinking is that, a separate model

is fit for each pattern and then the results can be combined across the different patterns

in order to derive an average estimate of the model parameters. Thus, in these mod-
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els the joint distribution of the longitudinal measurements as well as the missing data

indicators is divided into response pattern so that the distribution of the longitudinal

measurements depends on the pattern of responses. As mentioned earlier, pattern mix-

ture models are under-identified, or possess non-estimable parameters. Therefore, some

identifying constraints are required. Little (1993, 1994) proposed the use of the identify-

ing restrictions in which inestimable parameters of the incomplete patterns are set equal

to (functions of) the parameters describing the distribution of the completers to deal

with under-identifiability of these models. In fact, there is an alternative major strategy

simplified to deal with the under-identifiability of pattern mixture models, called model

specification in which the different pattern allows for sharing of certain parameters so

that the missing pattern can borrow information from patterns with more data points

(Verbeke and Molenberghs, 2000). The advantage of this strategy is that the number of

parameters decreases which is in general an issue with pattern mixture models. Detailed

strategies of pattern mixture modelling are given in Verbeke and Moleberghs (2000),

Molenberghs et al. (2003) and Molenberghs and Kenward (2007).

Our primary concern in this study is to apply a pattern mixture model including the

identifying restriction strategy. In doing so, we follow Verbeke and Molenberghs (2000)

in illustrating the use of this strategy based on the results obtained by Molenberghs et al.

(1998b). We are restricting attention to dropout which is a special case of monotone

missingness. Let us assume that there are t = 1, . . . ,T dropout patterns, where the

dropout indicator, introduced in section 2, is d = t + 1. The complete data density, for

pattern t, can be expressed as

ft(y1, . . . ,yT ) = ft(y1, . . . ,yt) ft(yt+1, . . . ,yT | y1, . . . ,yt). (8)

It is clear from equation (8) that the first factor ft(y1, . . . ,yt) is identified from the

observed data assuming the first factor is known, and modeled using the observed

data. Whereas the second factor is not identifiable from the observed data. In order

to identify the second component, the identifying restriction can be applied (Verbeke

and Molenberghs, 2000). It is often necessary to base identification on all patterns for

which a given component is identified. We denote this component by ys. Thus, this can

be described as

ft(ys | y1, . . . ,ys−1) =
T

∑
j=s

ωs j f j(ys | y1, . . . ,ys−1), s = t +1, . . . ,T. (9)

We denote the set of ωs j used by the vector ωs, components of which are typically

non-negative. Everyωs that sums to 1 provides a valid identification scheme. Hence, by

incorporating equation (9) into (8), we have
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ft(y1, . . . ,yT ) = ft(y1, . . . ,yt)
T−t−1

∏
s=0

[

T

∑
j=T−s

ωT−s, j f j(yT−s | y1, . . . ,yT−s−1)

]

(10)

To establish the complete data density, it is clear in equation (10) whose information

can be used to complement the observed data density in pattern t. There are three sets

of identifying restrictions associated with such choices of ωs. Complete case missing

values (CCMV) that were proposed by Little (1993) use the following identification

ft(ys | y1, . . . ,ys−1) = fT (ys | y1, . . . ,ys−1), s = t +1, . . . ,T,

corresponding to ωsT = 1 and all others equal 0, which is to say that identification is

always done from the completers’s pattern. Alternative restrictions are based on so called

neighboring case missing values (NCMV). In these restrictions, the nearest identified

pattern can be used as follows

ft(ys | y1, . . . ,ys−1) = fs(ys | y1, . . . ,ys−1), s = t +1, . . . ,T.

The NCMV restriction follows from setting ωs = 1 and all others equal 0. Finally, the

third case for equation (10) is the available case missing values (ACMV). With regard

to the correspondingωs for ACMV, there always is a unique choice. Molenberghs et al.

(1998b) show that the corresponding ωs can have the following components

ωs j =
α j f j(y1, . . . ,ys−1)

∑
T
ℓ=sαℓ fℓ(y1, . . . ,ys−1)

, j = s, . . . ,T, (11)

where α j is the fraction of observations in pattern j. Clearly, ωs j defined by (11)

contains positive components and sum to 1. That is, a valid density function is defined.

The selection and pattern mixture families can be connected using this MAR-ACMV

link. The ACMV is reserved for a counterpart of MAR in the pattern mixture setting.

A specific counterpart to MNAR selection models has been studied by Kenward et al.

(2003).

4. Application to the NCGS data

4.1. The data

In this section, we describe the application of the selection and pattern mixtures models

to data from the National Cooperative Gallstone Study (NCGS). Further background

details of this experiment are given in Schoenfield and Lachin (1981) and in its

accompanying discussion. In this study, 103 patients were randomly assigned to three
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treatment groups corresponding to two doses; that is, high-dose (750 mg per day), low-

dose (375 mg per day) and placebo, and were to be treated for four weeks. The current

analysis is based on a subset of the data on patients who had floating gallstones and

who were assigned to the high-dose and placebo groups. In the NCGS it was suggested

that chenodiol would dissolve gallstones but in doing so might increase levels of serum

cholesterol. As a result, serum cholesterol (mg/dL) was measured at baseline and at 6,

12, 20 and 24 weeks of follow-up. In this experiment, many cholesterol measurements

contain missing values because of missed visits, laboratory specimens were lost or

inadequate, or patient follow-up was terminated. In addition, all subjects have observed

values at time 6. One group of individuals received study treatment (drug and placebo),

but dropped out of the study before the scheduled post-baseline time. These individuals

dropped out of the study at time point 12. However, other individuals dropped out of the

study either at time point 20 or 24. Therefore, the data presents three possible dropout

patterns (dropout at time points 12, 20, or 24). All 103 patients are observed at the first

occasion, whereas there are 93, 78 and 67 patients seen at the second, third and fourth

weeks, respectively. The percentage of patients that are still in the study after each week

is tabulated in Table 1 by treatment arm. Figure 1 represents the means across weeks

by treatment group. A primary objective of this trial was to study the safety of the

drug chenodiol for the treatment of cholesterol gallstones. In what follows, we restrict

our attention to examination of more than just this association between treatment and

cholesterol. That is, we investigate the potential influence of dropout on the outcome

of interest, the serum cholesterol, as well as the interactive effect of dropout with week

and treatment-related influences on the serum cholesterol. The focus here will be on the

parameter estimates, standard errors and p-values.

Figure 1: Serum cholesterol data. Means across weeks by treatment (High dose “1” and Placebo “2”).
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Table 1: NCGS data: Percentage of

patients still in study, by treatment arm

(Drug = high-dose (750 mg per day)).

week drug placebo

6 100 100

12 45 62

20 57 63

24 46 69

4.2. Fitting selection model

First, we consider fitting the selection model. In line with Diggle and Kenward (1994),

we fit the selection models to the serum cholesterol data by combining the measurement

model with the logistic regression for dropout model. The combined model for mea-

surement/dropout will be fitted to the serum cholesterol by maximum likelihood using

a generic function maximization routine. We use the linear mixed effects model of the

form in equation (5) in order to obtain initial values for the parameters of the measure-

ment model. In the fitted model, we assume different intercepts and treatment effects

for each of the four time points, with a (4×4) unstructured variance-covariance matrix.

Specifically, we consider a multivariate normal model, with unconstrained time trend

under placebo and an occasion-specific treatment effect. Since serum cholesterol data

consist of 103 subjects (i = 1, . . . ,103) on four time points ( j = 6,12,20 and 24), the

model can be written as

Yi j = β j1 +β j2Gi + ǫi j, (12)

where Gi = 0 for placebo and G1 = 1 for active drug. In this way, the parameter estimates

and standard errors as well as p-values for the eight mean model parameters can be ob-

tained. To fit this model, we use SAS procedure MIXED with REPEATED statement.

Next, we consider the dropout model. The dropout will be allowed to be independent

of covariates. We fit the model with an intercept, an effect for previous outcome and

an effect for the current unobserved measurement, corresponding to MCAR, MAR and

MNAR, respectively. Dependence on future unobserved measurements is theoretically

possible, but for simplicity, we model dependence on the current unobserved measure-

ments. The probability of serum cholesterol is assumed to follow the logistic regression

model (a commonly used model for dropout process, see, Molenberghs and Kenward,

2007) in equation (7). Therefore, the logistic regression model consists of three param-

eters; that is, an intercept (ψ0), the effect of the measurement prior to dropout (ψ1) and

the effect of the measurement at the time of dropout (ψ2). Consequently, for the four

time points, the model can be expressed as follows
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logit[g(yi j−1,yi j)] = logit[p(Di = j | yi j−1,yi j)] =ψ0 +ψ1yi j−1 +ψ2yi j, j = 2,3,4,5.

(13)

Estimation of a selection model for MNAR can be seen as major complication

as the dropout indicators depend on the unobserved measurement. For example, in

the selection model mentioned above, the dropout indicators depend in part on the

unobserved longitudinal measurements at the time of dropout. This leads to complexity

in assessing the likelihood function, however, one that can be handled (Diggle and

Kenward, 1994). Virtually, the parameters were estimated using a code written in SAS

provided by Dmitrienko et al. (2005) that maximizes the log-likelihood for the model

using PROC IML.

Table 2 shows the parameter estimates, standard errors and p-values of the fixed ef-

fects for the selection model, including the eight mean model parameters, all into the

marginal measurement model as well as in the logistic dropout model. Interestingly, the

comparison of the MCAR and MAR produces the same results when compared to those

of the complete case analysis, except for negligible differences, as seen in the standard

errors. These results are in line with theoretical findings, see, for example, Molenberghs

and Kenward (2007). In the context of the assumed model, when examining the statisti-

cal significance of the results in the dropout model, the LRT test statistic for comparing

the MAR and MCAR models is 17.1. The corresponding tail probability from χ2 with

1 degree of freedom is p < 0.001 which is significant. This indicates that there is a sig-

nificant evidence for MAR. In other words, dropout completely at random can be ruled

out in the context of the assumed model. However, great care has to be taken with such

a conclusion (Molenberghs et al., 1997; Molenberghs and Verbeke, 2005). To assess the

mechanism that the dropout are MNAR, a problem occurs in that neither an LRT statistic

between the models that assume the dropout is MAR against MNAR nor an assessment

of ψ2 relative to its standard error is reliable (Jansen et al., 2006). Consequently, it is

not possible to verify the mechanism that the dropout is MNAR (see, Molenberghs, et

al., 2008). One of our interests lies in the marginal treatment effect. There is no overall

treatment effect and p-values between the three models do not vary too much.

However, the situation is different for the occasion-specific treatment effects con-

sidered here. For all weeks, all four p-values for the treatment effects indicate non-

significance, whereas for all cases the p-values are certainly highly significance

(p < 0.0001) for all intercepts. Now, we discuss factors which influence dropout. In

doing so, in the full selection models, the logistic regression for dropout is modeled

based on (13). As can be seen in Table 2, the maximum likelihood estimates for ψ1

(0.04) and ψ2 (-0.16) are not necessarily equal, however, their signs are different. This

finding is not surprising. It confirms the argument put forward by Molenberghs et al.

(2001a). They pointed out that since two subsequent measurements are usually posi-

tively correlated, the dropout model can depend on the increment, i.e., yi j − yi, j−1. The

dropout estimated from the MNAR model is as follows:
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logit[p(Di = j | yi j−1,yi j)] =−1.64−0.12yi, j−1 −0.16(yi j − yi, j−1). (14)

However, some insight into this fitted model can be obtained by the re-parameterizing

the dropout parameters with respect to increment and the sum of the successive mea-

surements. Therefore, we re-parameterize the dropout probabilities from the dropout

model as in equation (13) to obtain

logit[p(Di = j | yi j−1,yi j)] = ϑ0 +ϑ1(yi, j + yi, j−1)+ϑ2(yi j − yi, j−1), j = 2,3,4,5.

(15)

Here, ϑ1 = (ψ1+ψ2)/2 and ϑ2 = (ψ1−ψ2)/2. These parameters represent dependence

on level and increment in the serum cholesterol, and these quantities are likely to be

much less strongly correlated than are yi j and yi, j−1. Rewriting the fitted MNAR model

as in equation (15),

logit[p(Di = j | yi j−1,yi j)] =−1.64−0.06(yi, j + yi, j−1)+0.10(yi j − yi, j−1), (16)

suggests that the probability of dropout increases with larger negative increments. In

other words, those patients with a greater increase in the overall level of the serum

cholesterol from the previous week have a higher probability of dropping out of the

experiment.

4.3. Fitting pattern mixture models

Now, we turn our attention to fitting the pattern mixture models using the strategy

outlined in section 3, making CCMV, NCMV and ACMV identifying restrictions. To

fit pattern mixture models through identifying restrictions, three steps in the analysis

procedure are needed (For details of implementation, see Molenberghs and Kenward,

2007). First, fit the initial model to the observed data within each of the patterns

ft(y1, . . . ,yt), (17)

where t = 1, . . . ,T indicate the observed dropout times in the data set. In this step,

we fit a separate model within each pattern, then the resulting parameter estimates

and their estimated variance-covariance matrices were used to extrapolate the patterns.

Second, select an identification scheme to determine the conditional distributions of the

unobserved measurements, given the observed ones

ft(yt+1, . . . ,yT | y1, . . . ,yt). (18)
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As stated earlier, each of such conditional distributions is a mixture of known normal

densities for continuous repeated measures. According to the weights ws introduced in

equation (9), an easy way to simulate values from the mixture distribution is to randomly

select a component of the mixture and then draw from it. In this regard, we choose an

identifying restriction, mentioned earlier, to define the conditional distributions of the

unobserved measurements, conditional upon the observed ones. Third, fit a model to

the so-augmented data. Multiple imputation (MI) can be used to fit such models by

aiding to draw values for the unobserved components, conditional upon the observed

outcomes and correct pattern-specific density in model (18). Here, we notice that MI is

a simulation-based technique that imputes the missing values multiple times in order to

construct multiple complete data sets. For more detail of this technique, we recommend

Rubin’s (1987) book. Analytically, MI involves three steps, imputation, analysis and

combination. Thus, the identifying step corresponds to the so-called imputation step,

and the final model corresponds to the analysis step. Finally, the combination step, is

where the inferences from a number of imputations are drawn together and combined

into a single one. The goal being to pool the simplicity of imputation strategies, without

bias in both point estimates and measures of precision. After applying each of the three

identifying restrictions, as above introduced, the same model as before being fitted (12)

is analyzed. The model is parameterized as follows: different intercepts and treatment

effects for each of the four time points, with a 4× 4 unstructured covariance matrix

for each pattern. We draw multiple imputations five times. The choice of five times

imputations is considered adequate as the efficiency of a parameter estimate based on the

number of imputations is (1+ς/M)−1, where ς is the rate of missing data and M is the

number of imputations (Rubin, 1987). Rubin’s (1987) simulation studies indicate that

the number of imputations can generally be constrained to fewer than 10. Also, many

statistical practices tend to support Rubin’s heuristics of 3 to 10 imputations. In general,

Schafer and Olsen (1998) recommended the use of M=5 before the results are combined.

By this rationale, we achieve at least 97% efficiency as in our case the missing data rate

is almost 17%. In this way, we ended up with totally five multiply-imputed data sets

for each choice of identifying restriction strategy which can be analysed, using several

possible models. Once the imputations have been generated, the final analysis model

from each completed data sets is fitted and MI inference conducted. The parameter

and precision estimates can be obtained using classical MI machinery. In particular, the

asymptotic covariance matrix of the form

V =W +

(

M+1

M

)

B,

where W denotes the average within-imputation variance and B the between-imputation

variance (Rubin, 1987). The analysis of identifying restrictions, fitting of imputed data,

and a combination of the results into a single inference was implemented using the

SAS macro. This SAS macro dealt with the analysis of the three types of identifying
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restrictions as follows. First, fit the linear mixed model per pattern using PROCs SORT

and MIXED. Second, complete the data using ACMV, CCMV and NCMV restrictions

using PROCs IML and MI. Third, analyze the 5 complete data sets using a linear-mixed

model using PROC MIXED. Fourth, combine the results from the 5 analyzed models

using PROC MIANALYZE.

The results of the three types of identifying restrictions are listed in Table 3.

Examining these results we see that the estimates for the corresponding parameters

are comparable and their numerical values are indeed very close to each other under

the three possible restrictions, namely ACMV, CCMV and NCMV. It can be seen from

the analysis that the association p-values for the marginal effect assessments are all

nonsignificant, their p-values being all greater than 0.05. However, the association p-

values for the intercepts are highly significant (p < 0.0001), in line with the p-values

obtained from the selection model analysis. In summary, no significant treatment effect

is obtained. These findings confirm those obtained from the selection model formulation

which gives more weight to this conclusion. These results can be justified by the fact

that pattern mixture models using identifying restrictions play a very similar role to the

modelling assumptions in the selection model case (Michiels et al., 1999). Furthermore,

the parameter estimates and standard errors for the first marginal effect are equal for

all the three restrictions CCMV, NCMV and ACMV, see the effects for intercept6 and

treatment6. Such results should be expected considering the fact that the first outcome

contained observed data for all subjects that were considered in the analysis.

As shown in the results in Table 3, the model building using CCMV, NCMV

and ACMV restrictions in contrast to selection model did not allow an estimation of

whether the dropout process is MNAR or not, because of differences in the modelling

assumptions. This agrees with previous studies, see, for example, Molenberghs et al.

(1998b), in that the identifying restrictions in a pattern mixture models context can be

used only to relate the model to a MAR mechanism. Consequently, an important issue

is to equate results for both the ACMV and MAR to make a clear and useful connection

between the selection model and the pattern mixture model framework (Verbeke and

Molenberghs, 2000; Kenward et al., 2003). With this in mind, the same is true for the

selection model, MAR-based ACMV restrictions indicating non-significant treatment

effects at all weeks. This can be explained to mean that the treatment effect appear

to be independent of the ACMV (MAR) assumption. Although corresponding models

include the same effects, the estimates for ACMV are slightly different to those for

MAR. These slight differences are to be expected as argued in Kenward et al. (2003)

that both models are similar in spirit but not necessarily identical. On the other hand, the

parameter estimates and standard errors for the treatment effects obtained by applying

NCMV are smaller than those of CCMV and ACMV as seen in some cases. This is

to be expected as somewhat CCMV and ACMV pattern mixture models use data from

different patterns to multiply impute new values, whereas in NCMV, pattern mixture

models take information from the neighboring case patterns only. Further, ACMV and

CCMV estimates are closer to each other since many more completers are available than
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does NCMV. Therefore, additional variability may be introduced because, depending on

the nature of the conditional distributions sampled from, data have been borrowed from

more distant patterns.

5. Discussion

In this study, we demonstrated the application of two families of models for analysing

incomplete longitudinal data, where the dependent variable is missing across time. In

particular, we illustrated the application and compared results of analysis using these

models. We focused on the situation in which outcomes are continuous. The models

that were considered were the selection model and the pattern mixture model. Many

authors have recommended fitting both families of models to be able to gain extra

insight into the data to assess sensitivity to the modelling assumptions and to assess

the extent of agreement in results as well (see, Molenberghs and Verbeke, 2005). The

study focused on the specific cases of selection model and pattern mixture models;

that is, a Diggle and Kenward’s (1994) model and an identifying restrictions strategy

(Little, 1993, 1994), respectively. In applying the selection model, we used logistic

regression for modelling dropout, however, a number of other probabilities can be used,

for example, using survival analysis techniques, the length of duration on treatment

or placebo before dropout can also be modelled. However, in this study, the survival

model for dropout cannot be used because the time to event (dropout) is not exactly

determined by design. For example, if someone is not seen at week 12, the exact time

to dropout could theoretically be any time between week 6 and 12. The objective was

to investigate the potential influence that dropout might have or exert on the dependent

measurement on the considered data and to deal with incomplete sequences. The results

from the pattern mixture models were analogous to those from the selection model to

obtain additional insights into the serum cholesterol data. The application was based on

an example from a longitudinal clinical trial data.

Findings in general suggested that the conclusion obtained under both modelling

frameworks practically coincide. Thus, one can put more confidence in these results

as argued by many authors. For example, Michiels et al. (1999, 2002) have argued that

greater confidence in a conclusion can be reached when the analysis of joint applications

of these models leads to essentially similar inference. Both families of models were

compared and noticeable similarities in results were found. Hence, this begs the question

as how, depending on the scientific question of interest such as conditional measurement

probabilities, to choose between them. Michiels et al. (1999) argued that the selection

model can be recommended as a natural choice when the interest is in the population as a

whole, i.e., marginal effects. Whereas, pattern mixture models can be considered, when

investigating the differences between subgroups that are identified by their measurement

patterns, i.e., pattern-specific.
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The selection models suggested that the dropout mechanisms were not completely at

random. In other words, in the context of the assumed model, there was a lot of evidence

in favour of the prevalence of an MAR rather than an MCAR dropout process. However,

many authors, Diggle and Kenward (1994) and Molenberghs and Verbeke (2005) for

example, stated that careful consideration is necessary with such a conclusion when

using only the data under analysis. A problem arises for dealing with dropout that are

MNAR. Given this problem in a longitudinal study, it is important to realize that this

assumption gives rise to the dropout that is not likely to be known in the application

setting. Therefore, any of the different proposed application methods to address dropout

that are MNAR cannot easily be verified. For example, one often does not know if the

dropout process is accurately captured by a particular method used. Molenberghs and

Kenward (2007) suggested that one should apply several approaches to the same data

problem. This is the case when the sensitivity of parameters estimates to the different

mechanisms about the dropout process may be investigated, for example, by applying

models that allow for the dropout to be MNAR. According to Xu and Blozis (2011), if

parameter estimates are comparable under different methods, this can indicate that the

dropout process may be ignored. However, if different methods give different parameters

estimates of the longitudinal model, this can indicate that the dropout process is a vital

element for the description of the data in the analysis.

The structure of the selection dropout model adopted that dropout increases with a

unit change in the serum cholesterol; that is, the dropout is related to the larger negative

increments (yi j−yi, j−1) rather than to any actual observation (yi j+yi, j−1), which implies

that patients with a greater decrease in the overall level of the serum cholesterol from

the previous week have a higher probability of dropping out of the experiment. This

situation is very common in practice within a model of the Diggle and Kenward type,

and we refer to Molenberghs and Kenward (2007), Diggle and Kenward (1994) and

Molenberghs et al. (1997) as examples. Under the modeling scheme applied in this

study, it can be seen from the analysis that the treatment effects over all weeks under all

ACMV, CCMV and NCMV restrictions were non-significant, and the same is true for

the selection model analysis. Therefore, it is clear that there is a strong evidence for no

significant treatment in the context of serum cholesterol data. It appeared that the non-

significant treatment effects were not conditional upon any dropout mechanism holding.

As a results, the conclusions obtained from CCMV, NCMV and NCMV restrictions did

not differ considerably. As argued in Molenberghs et al. (2008), the choice between

them is not always clear. Although they fit the observed data equally well, the difference

between them only becomes clear with respect to estimation of the missing data,

conditional upon the observed data.

On the other hand, the use of different models in which the data were analysed,

can be considered as a sensitivity analysis. In particular, the use of pattern mixture

models including identifying restrictions can be seen as a first tool for assessing the

sensitivity of the assumptions made. Further, other more complex or flexible sensitivity

analysis are also possible, under new models for the probability of dropout. The
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analysis conducted here is a typical sensitivity analysis as the serum cholesterol data

were analyzed using different assumptions concerning the longitudinal measurements

and dropout mechanisms. In particular, both models compared well concerning some

aspects, for example, marginal treatment effects. Such comparisons as these can play a

vital role in sensitivity analysis by providing additional motivation, for example, when

considering the choice between selection and pattern mixture models. In conclusion,

because the true model and measurement process as well as dropout process are often

unverifiable, the recommendation that in many settings, multiple strategies or models

such as selection and pattern mixture models be applied to the same data set in order to

investigate the impact of assumption on dropout or missingness is supported.
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