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A new class of Skew-Normal-Cauchy distribution
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Abstract

In this paper we study a new class of skew-Cauchy distributions inspired on the family extended

two-piece skew normal distribution. The new family of distributions encompasses three well known

families of distributions, the normal, the two-piece skew-normal and the skew-normal-Cauchy

distributions. Some properties of the new distribution are investigated, inference via maximum

likelihood estimation is implemented and results of a real data application, which reveal good

performance of the new model, are reported.
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1. Introduction

Arnold et al. (2009) introduced a random variable X ∼ ET N(α,β) with probability

density function given by:

fET N(x;α,β) = 2cαφ(x)Φ(α|x|)Φ(βx), −∞ < x < ∞, (1)

where α,β ∈R, cα= 2π/(π+2arctan(α)), andφ(·) and Φ(·) are the density and cumu-

lative distribution functions of the standard N(0,1) distribution, respectively.
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Notice that for the particular case α = 0 the well known skew-normal distribution

(Azzalini, 1985) with density function given by

fSN(x;β) = 2φ(x)Φ(βx), −∞ < x < ∞, (2)

is obtained. For β = 0, one obtains the so called two-piece skew-normal distribution

given by Kim (2005), denoted by {T N(α) : −∞ < α < ∞} with probability density

function given by

fT N(x;α) = cαφ(x)Φ(α|x|), −∞ < x < ∞, (3)

with cα as the normalizing constant. Another family of models studied in Nadarajah and

Kotz (2003), is generated by using the kernel of the normal distribution, that is,

h(x;λ) = 2φ(x)G(βx), −∞ < x < ∞, (4)

with β ∈ (−∞,∞) and G(·) is a symmetric distribution function. A particular case of this

class follows by taking G(·) as the CDF of the Cauchy distribution, which as shown by

Nadarajah and Kotz (2003), results in a model with the same range of asymmetry, but

with greater kurtosis than that of the skew-normal model. The pdf for a random variable

X with this distribution, which we denote by X ∼ SNC(β), can be written as

fSNC(x;β) = 2φ(x)

{
1

2
+

1

π
arctan(βx)

}
, −∞ < x < ∞. (5)

Arrué, Gómez, Varela and Bolfarine (2010) studied some properties, stochastic repre-

sentation and information matrix for the model given in (5). A random variable Z has

a extended skew-normal-Cauchy random variable with parameter α,β ∈ (−∞,∞), de-

noted Z ∼ ESNC(α,β), if its probability density function is

f (z;α,β) = 2cαφ(z)Φ(α|z|)
{

1

2
+

1

π
arctan(βz)

}
, −∞ < z < ∞. (6)

For the rest of the article, Z will denote a random variable with density (6). Figures 1

depicts shapes of density function (6) for different parameter values (continuous and

discontinuous lines).

This model is important because it contains strictly (not as limiting cases) the normal,

SNC and TN distributions. Moreover, this distribution inherits the bimodal nature of

the TN model which is controlled by parameter α, that is, when α > 0 the model is

bimodal and when α< 0 it is unimodal. Since it contains the Cauchy distribution, greater

flexibility in the kurtosis is earned and therefore could better fit data sets containing

outlying observations.
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Figure 1: Examples of the ESNC density.

One of the main focus of the paper is to develop a stochastic representation of the

ESNC model which allows moments derivation in a simpler way. We derive also the

Fisher information matrix for the ESNC model and show that it is singular for α =

β = 0. Using the approach in Rotnitzky, Cox, Bottai and Robins (2000), an alternative

parametrization is proposed which makes the Fisher information matrix nonsingular at

α= β = 0.

The paper is organized as follows. Section 2 presents properties of the ESNC

model. Section 3 presents a stochastic representation for this model which allows a

simple derivation for the moments generating function leading to simple expressions

for asymmetry and kurtosis coefficients. The Fisher information matrix is derived in

Section 4.2, which turns out to be singular for α = β = 0. A parametrization is studied
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which makes it nonsingular for α = β = 0 and allow an asymptotic study of the MLE

properties at this point. In Section 5 we use a data set to illustrate the flexibility of the

model ESNC, for this we use the maximum likelihood approach and compare it with the

TN and SNC models. The paper is concluded with a discussion section.

2. Distributional properties of the ESNC model

Clearly, density (6) is continuous at z= 0 for all α and β , However, it is not differentiable

at z = 0 for α 6= 0. In the following we present uni/bimodal properties possessed by

the ESNC family. Notice that this model contains the normal, two-piece skew-normal

and skew-normal-cauchy as special cases. The following properties follow immediately

from the (6).

Property 1 The ESNC(0,0) density is the N(0,1) density.

Property 2 The ESNC(0,β) density is the SNC(β) density.

Property 3 The ESNC(α,0) density is the T N(α) density.

Property 4 As α→ ∞, f (z;α,β) tends to the SNC(β) density. In contrast, as α→−∞,

f (z;α,β) degenerates at 0.

Property 5 As β → ∞, f (z;α,β) tends to the 2cαφ(z)Φ(αz)I(z ≥ 0) density. In con-

trast, as β →−∞, f (z;α,β) tends to the 2cαφ(z)Φ(−αz)I(z < 0) density.

Property 6 If Z ∼ ESNC(α,β) random variable, then −Z ∼ ESNC(α,−β) random

variable.

Property 7 For α> 0, the density (6) is bimodal, i.e. in each region of z ∈ (−∞,0] and

z ∈ [0,∞), log f (z;α,β) is a concave function of z.

Property 8 For α> 0, the two modes of (6) are located at z = z0 and z = z1 satisfying

z0 =−α φ(αz0)

Φ(−αz0)
+

β

π(1+β2z2
0)

and z1 = α
φ(αz1)

Φ(αz1)
+

β

π(1+β2z2
1)
,

where z0 < 0 and z1 > 0.

Property 9 For α< 0, the single mode of (6) is located at z = 0, because f ′(z;α,β)< 0

for z > 0 and f ′(z;α,β)> 0 for z < 0.
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3. A stochastic representation

The main result states that if Z ∼ ESNC(α,β) then the distribution of Z can be obtained

as a mixture in the asymmetry parameter between the extended two-piece skew-normal

and half-normal (HN) distributions. In the following I(A) denotes the indicator function

of the set A.

Proposition 1 If Z|Y = y ∼ ET N(α,βy) and Y ∼ HN(0,1) then Z ∼ ESNC(α,β).

Proof. Let Z|Y = y ∼ ET N(α,βy) and Y ∼ 2φ(y)I(y ≥ 0), then

f (z;α,β) =

∫ ∞

0
2cαφ(z)Φ(α |z|)Φ(βyz)2φ(y)dy

= 2cαφ(z)Φ(α |z|)
∫ ∞

0
2Φ(βyz)φ(y)dy

= 4cαφ(z)Φ(α |z|)
∫ ∞

0

∫ βz

−∞
φ(t)φ(y)dtdy

= 4cαφ(z)Φ(α |z|)
[∫ ∞

0

∫ 0

−∞
φ(t)φ(y)dtdy+

∫ ∞

0

∫ βz

0
φ(t)φ(y)dtdy

]

The terms

∫ ∞

0

∫ 0

−∞
φ(t)φ(y)dtdy and

∫ ∞

0

∫ βx

0
φ(t)φ(y)dtdy are the integrals of the

bivariate normal distribution. Then, making changes in variables t = r cosu and y =

r sinu we have

f (z;α,β) = 4cαφ(z)Φ(α |z|)
[

1

4
+

1

2π

∫ arctan(βz)

0

∫ π
2

0
e−r2/2rdrdu

]

= 2cαφ(z)Φ(α |z|)
{

1

2
+

1

π
arctan(βz)

}
,

which concludes the proof.

3.1. Location and scale extension

For applications it is convenient to add location and scale parameters to the ESNC

distribution. If Z ∼ ESNC(α,β) and if X = µ+σZ, where µ∈ (−∞,∞) and σ> 0, then

we can write X ∼ ESNC(µ,σ,α,β) or, at times, X ∼ESNC(θ) where θ = (µ,σ,α,β)’.

This leads to the following definition.

Definition 1 A random variable X has a distribution in the ESNC location and scale

family if the density is given by
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f (x;θ)=
2cα

σ
φ

(
x−µ
σ

)
Φ

(
α

∣∣∣∣
x−µ
σ

∣∣∣∣
){

1

2
+

1

π
arctan

(
β(x−µ)
σ

)}
, −∞< x<∞.

(7)

We write X ∼ ESNC(θ) or X ∼ ESNC(µ,σ,α,β).

3.2. Moments

In order to evaluate moments of the ESNC distribution, the following technical propo-

sitions will be useful. In these propositions, we use the notation

ar(α,λ) :=

∫ ∞

0
2cαtrφ(t)Φ(λt)dt, (8)

and

dr(α,β) :=

∫ ∞

0
2cαtrφ(t)Φ(αt)Φ(βt)dt, (9)

where α,β ,λ ∈ (−∞,∞).

We provide next the recursive formulation for computing the functions above for

a random variable with density given in (6) which will be fundamental for computing

moments of the random variable X ∼ ESNC(θ). The proof is presented in Arnold et al.

(2009).

Proposition 2 According to (8),

ar(α,λ) =





π+2arctan(λ)
π+2arctan(α) , r = 0,

cα√
2π

(
1+ λ√

1+λ2

)
, r = 1,

(r−1)ar−2(α,λ)+
2r/2−1λcα
π(1+λ2)r/2 Γ

(
r
2

)
, r ≥ 2,

(10)

Proposition 3 Let U ∼ T SN(α), then

ar(α) := E(U r) =





1, r = 0,

cα√
2π

(
1+ α√

1+α2

)
, r = 1,

(r−1)ar−2(α)+
2r/2−1αcα
π(1+α2)r/2 Γ

(
r
2

)
, r ≥ 2.

(11)

This result is obtained for λ= α in Equation (10).
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Proposition 4 According to (9),

dr(α,β) =





∫ ∞
0 2cαφ(t)Φ(αt)Φ(βt)dt, r = 0,

cα√
2π

[
1
2 +

α√
1+α2

Ψ
(

β√
1+α2

)
+ β√

1+β2
Ψ

(
α√

1+β2

)]
, r = 1,

(r−1)dr−2(α,β)+
α√

2π(1+α2)r/2
ar−1(α,λ1)+

β√
2π(1+β2)r/2

ar−1(α,λ2), r ≥ 2,

(12)

where Ψ(t) = 1/2+ arctan(t)/π is a CDF of the standard Cauchy distribution, λ1 =

β/
√

1+α2, λ2 = α/
√

1+β2 and d0(α,β) must be evaluated numerically.

Proposition 5 Let Z ∼ ESNC(α,β), Y ∼ 2φ(y)I(y ≥ 0) and X = µ+σZ ∼ ESNC(θ)

so that, for r = 1,2, . . ., we have:

E(Zr) = (1− (−1)r)E(dr(α,βY ))+(−1)rar(α) and E(X r) =
r

∑
k=0

(
r

k

)
µr−kσkE(Zk),

(13)

where ar(α) and dr(α, ·) are given in (11) and (12), respectively.

Proof. For computing moments of the random variable Z ∼ ESNC(α,β) we use con-

ditional expectations and the stochastic representation given in Proposition 1, leading

to

E(Zr) = E(E(Zr|Y )) =
∫ ∞

0
[(1− (−1)r)dr(α,βy)+(−1)rar(α)]2φ(y)dy

= (1− (−1)r)
∫ ∞

0
2dr(α,βy)φ(y)dy+(−1)rar(α)

∫ ∞

0
2φ(y)dy

= (1− (−1)r)

∫ ∞

0
2dr(α,βy)φ(y)dy+(−1)rar(α)

= (1− (−1)r)E(dr(α,βY ))+(−1)rar(α).

Corollary 1 If Z ∼ ESNC(α,β), then

E(Zr) =

{
ar(α), r even,

2kr(α,β)−ar(α), r odd,
(14)

where kr(α,β) := E(dr(α,βY )).

The even moments of the ESNC distribution coincide with the even moments of the

ETN distribution given by Arnold et al. (2009).

In the following we present expressions for computing kr(α,β) when r is odd. The

proofs for the results presented next follow directly from (10) and (12).
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Proposition 6 Under the conditions in Proposition 5, we have

kr(α,β)=





2cα√
2π

[
1
4
+ α√

1+α2

∫ ∞

0
φ(y)Ψ

(
βy√

1+α2

)
dy r = 1,

+ β

∫ ∞

0

yφ(y)√
1+β2y2

Ψ

(
α√

1+β2y2

)
dy

]
,

(r−1)kr−2(α,β)+
α√

2π(1+α2)r/2 gr−1(α,β)+
β√
2π

jr−1(α,β), r = 3,5, . . .

(15)

where

gr(α,β)=





2cα

∫ ∞

0
φ(y)Ψ

(
βy√

1+α2

)
dy, r = 0,

(r−1)gr−2(α,β)+
β1−rcαe

1+α2

2β2

√
2π3(1+α2)(1−r)/2

Γ
(

r
2

)
Γ
(

1− r
2
, 1+α2

2β2

)
, r = 2,4, . . .

(16)

where Γ(a,z) =
∫ ∞

z e−tta−1dt is the incomplete Gamma function.

jr(α,β)=





2cα

∫ ∞

0

yφ(y)

(1+β2y2)
Ψ

(
α√

1+β2y2

)
dy, r = 0,

(r−1) jr−2(α,β)+
αcαΓ( r

2)
2−r/2π

∫ ∞

0

yφ(y)dy

(1+α2 +β2y2)r/2
√

1+β2y2
, r = 2,4, . . .

(17)

The terms kr(α,β), gr(α,β) and jr(α,β) can be calculated using numerical integration

for r, α and β . For reference we list the first four moments of the standard ESNC

distribution. If Z ∼ ESNC(α,β) then

E(Z) =
cα√
2π

(
− α√

1+α2
+

4α√
1+α2

∫ ∞

0
φ(y)Ψ

(
βy√

1+α2

)
dy (18)

+ 4β

∫ ∞

0

yφ(y)√
1+β2y2

Ψ

(
α√

1+β2y2

)
dy

)
,

E(Z2) = 1+
αcα

π(1+α2)
, (19)

E(Z3) = 2k3(α,β)−
cα√
2π

(
2+

2α√
1+α2

+
α√

(1+α2)3

)
, (20)

E(Z4) = 3+
αcα(5+3α2)

π(1+α2)2
, (21)
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Standard expressions for kurtosis and skewness can then be obtained using Equations

(18)− (21).

4. ML estimation

4.1. Likelihood

Suppose that we have available a sample of size n, X1,X2, . . . ,Xn from an ESNC(θ) dis-

tribution. In principle, the representation Xi = µ+σZi and the four moment expressions

for Z given in Equations (18)− (21) could be used to obtain method of moments es-

timates of the four parameters. However, the approach is not pursued further. Instead,

we will discuss the implementation of the maximum likelihood approach for this dis-

tribution given that it is more efficient asymptotically. The log-likelihood function of a

random sample (X1,X2, . . . ,Xn) from an ESNC(θ) distribution takes the form

l(θ ;X1,X2, . . . ,Xn) ∝ n log
(cα

σ

)
− 1

2

n

∑
i=1

Z2
i +

n

∑
i=1

logΦ(α|Zi|)+
n

∑
i=1

logΨ(βZi), (22)

Table 2 (see Appendix) shows the average MLEs of µ, σ, α and β for 1000 random

of size n (SD: standard deviation for the 1000 estimates). We do not consider the

case of β < 0, since by the reflection property 2.6, if X ∼ ESNC(0,1,α,−β) then

−X ∼ ESNC(0,1,α,β). Several parameter values are considered and moderate and

large sample sizes are used. The table shows that for large values of α and β the,

MLEs tend to overestimate (if positive) the true values of α and β . This overestimation

decreases as the true parameter values decrease and as sample size increases. If one

wants to reduce the asymptotic bias of the MLEs one can apply the correction approach

in Firth (1993), which amounts to penalize the likelihood for a MLE with less bias value.

4.2. The Fisher information matrix

4.2.1. Special cases

In the special case where α= 0 and β = 0 the information matrix for the ESNC model

(see Appendix) is singular, that is,

∣∣I(µ,σ,0,0)
∣∣=

∣∣∣∣∣∣∣∣∣∣∣

1

σ2 0 0 2
πσ

0 2

σ2
2
πσ

0

0 2
πσ

2(π−2)

π2 0

2
πσ

0 0 4

π2

∣∣∣∣∣∣∣∣∣∣∣

= 0.



44 A new class of Skew-Normal-Cauchy distribution

Comparing the above information matrix with the Fisher information matrix corre-

sponding to model SNC(β) given in Arrué et al. (2010) we note that they differ only

in the row and column corresponding to the second derivative with respect to the param-

eter α. The columns corresponding to the parameters µ and β are linearly dependent,

so the information matrix is singular. This difficulty has been noticed and investigated

in Azzalini (1985) in the context of the skew-normal distribution and was later stud-

ied in Chiogna (2005) in some other contexts. DiCiccio and Monti (2004) studied this

singularity problem in the context of the skew-exponential power distribution and Sali-

nas, Arellano-Valle and Gómez (2007) studied it in the context of the extended skew-

exponential power distribution. In summary, for this special case when the parameters

α and β tend to zero, we could not perform asymptotic statistical inference on these

parameters, since the information matrix is singular. And to overcome this problem, we

will use a reparametrization given by Rotnitzky et al. (2000), which is to transform the

score function Sβ in one that is linearly independent from the other score functions of

score (for the other parameters). With this procedure we obtain a nonsingular informa-

tion matrix.

4.2.2. Nonsingular Fisher information matrix

As considered in Arrué et al. (2010), we consider next a parameter transformation that

makes the information matrix nonsingular. Indeed, after extensive algebraic manipula-

tions, by using the approach in Rotnitzky et al. (2000), it follows that the convenient

parametrization is the same as the one derived in Arrué et al. (2010) for the SNC model,

namely,

µ∗ = µ+
2

π
σβ , σ∗ = σ

(
1− 2

π2
β2

)
, α∗ = α, β∗ = β

and hence the score vector obtained is
(

Sµ,Sσ,Sα,S
3
β/3!

)
where

S3
β =

∂ 3l(θ ;X∗)

∂β3

∣∣∣∣
α=β=0

.

Therefore, to obtain the transformed Fisher information matrix, we have to compute

E

(
Sµ

S3
β

3!

)
=

−2

πσ

E

(
Sσ

S3
β

3!

)
= 0
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E

(
Sα

S3
β

3!

)
= 0

E



(

S3
β

3!

)2

 =

4

9π6

[
96+π2

(
1

σ2
−48

)
+15π4

]

leading to the nonsingular Fisher information matrix for the ESNC model

I(µ,σ,0,0)=




1

σ2 0 0 −2
πσ

0 2
σ2

2
πσ

0

0 2
πσ

2(π−2)

π2 0

−2
πσ

0 0 4

9π6

[
96+π2

(
1

σ2 −48
)
+15π4

]
.




Comparing this information matrix with the one in Arrué et al. (2010) for the SNC(β),

it follows that they differentiate only on the row and column corresponding to the

additional parameter α. Hence, computing the inverse (I∗)−1
we have the asymptotic

variance of the maximum likelihood estimators for the parameters µ, σ, α and β ,

respectively.

5. Illustration

To illustrate the estimation procedure discussed in the previous section we consider

the variable N-Cream available in the data base Creaminess of cream cheese (see

Urlhttp://www.models.kvl.dk/Cream) which was used by Arnold et al. (2009). The

corresponding descriptive statistics for this variable are given by the sample size n =

240, the mean x = 7.578 and the variance s2 = 2.964. Quantities
√

b1 = −0.551 and

b2 = 3.173 correspond to the sample asymmetry and kurtosis coefficients, respectively.

In Table 1, the five models Normal (N), SNC, mixture (MIX), ETN and ESNC with

additional location and scale parameters are fitted to the data. MIX is a mixture

of two normal distributions represented by fZ(z;µ,σ,µ1,σ1, p) = p 1
σ
φ
(

z−µ
σ

)
+ (1−

p) 1
σ1
φ
(

z−µ1
σ1

)
. Notice that the N and SNC models are nested within the ESNC model,

so that likelihood ratio tests will provide meaningful comparisons for these models.

In all cases, the parameters are estimated by maximum likelihood using the R-

package optim (2011). The standard errors of the maximum likelihood estimates are

calculated using the information matrix corresponding to each model.

The summaries provided by Table 1 illustrate a key feature of the ESNC model;

its flexibility and the wide range of coefficients of skewness and kurtosis that it can

adapt to, in contrast to the other models. For example, it is clear that the fit of the
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normal model is inadequate because of the high degree of skewness of the data. To

compare the ESNC model with the normal and SNC models, consider testing the

null hypothesis of a normal or a SNC distribution against an ESNC distribution using

the likelihood ratio statistics based on the ratios Λ1 = LN(µ̂, σ̂, α̂)/LESNC(µ̂, σ̂, α̂, β̂)

and Λ2 = LSNC(µ̂, σ̂, α̂)/LESNC(µ̂, σ̂, α̂, β̂). Substituting the estimated values, we obtain

−2log(Λ1) =−2(−469.5862+461.555) = 16.062 and −2log(Λ2) =−2(−466.036+

461.555) = 8.962 which, when compared with the 95% critical value of the χ2
1 = 3.84,

indicate that the null hypotheses are clearly rejected and there is strong indication that

the ESNC distribution presents a much better fit than either the N or the SNC distribution

to the data set under consideration. In particular, there are significant differences

between normal and ESNC models, so not for use reparametrization Rotnitzky et al.

(2000). The conclusion of these analysis is that the ESNC model appears to be more

appropriate for the particular data set analyzed here. Moreover, using the AIC criterion

to MIX, ETN and ESNC models, we can conclude that the ESNC distribution fits better

the data. Furthermore, using the delta-method to the information matrix (see Appendix)

we have calculated the population estimates of the mean and variance (and their standard

deviations), given by Ê(X) = 7.596(0.007) and V̂ (X) = 2.897(0.002). These points are

illustrated in more detail in Figure 2 where the histograms and the fitted curves for the

data sets are displayed.

6. Discussion

The paper introduced an extension of the SNC model in Arrué et al. (2010) based on

the model defined in Arnold et al. (2009). Some properties of the model are studied and

inference is implemented via the maximum likelihood approach. The Fisher information

matrix is derived and it is shown to be singular in the vicinity of symmetry. A parameter

transformation is presented which contours the singularity problem, and which turn out

to be exactly the one derived for the model studied in Arrué et al. (2010). A data set

illustration reveals the good performance of the model introduced.

7. Appendix

A. In the formula of Equation (16), use the following integral:

∫ ∞

0

yφ(y)dy

(1+α2 +β2y2)r/2
=

e
1+α2

2β2

2
(r+1)

2
√
π|β |r

Γ

(
1− r

2
,
1+α2

2β2

)
.

Proof. Using the Integrate[ ] of Mathematica (2008) we have the result.
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B. δk = E
(

sgn(Z)Zk
(
φ(αZ)

Φ(α|Z|)

))
= 4

√
2cα

π3/2

∫ ∞
0 zkφ(

√
1+α2z)arctan(βz)dz

C. The score functions are given by

∂ l(θ ;X)

∂µ
=

n

∑
i=1

Zi

σ
− α
σ

n

∑
i=1

φ(αZi)

Φ(α|Zi|)
sgn(Zi)−

β

σ

n

∑
i=1

ψ(βZi)

Ψ(βZi)
,

∂ l(θ ;X)

∂σ
= − n

σ
+

1

σ

n

∑
i=1

Z2
i −

α

σ

n

∑
i=1

φ(αZi)

Φ(α|Zi|)
|Zi|−

β

σ

n

∑
i=1

ψ(βZi)

Ψ(βZi)
Zi,

∂ l(θ ;X)

∂α
= − ncα

π(1+α2)
+

n

∑
i=1

φ(αZi)

Φ(α|Zi|)
|Zi|,

∂ l(θ ;X)

∂β
=

n

∑
i=1

ψ(βZi)

Ψ(βZi)
Zi.

where ψ(t) = 1/(π(1+ t2)) is a PDF of the standard Cauchy distribution.

D. For one observation X ∼ ESNC(θ), the i j-th element of the information matrix I

is given by

Iθiθ j
=−E

[
∂ 2l(θ ;X)

∂θi∂θ j

]
, (23)

Eventually, one obtains the following expressions for the elements of the informa-

tion matrix.

Iµµ =
1

σ2
+

α3cα

σ2π(1+α2)
− α

2

σ2
η0 +

β2

σ2
ρ0,

Iµσ =
2

σ2
E(Z)− 1

σ2
αδ0 +

1

σ2
α3δ2 +

α2

σ2
η1 −

β

σ2
ξ+

2πβ3

σ2
τ+

β2

σ2
ρ1,

Iµα =
1

σ
δ0 −

1

σ
α2δ2 −

α

σ
η1,

Iµβ =
ξ

σ
− 2πβ2

σ
τ− β

σ
ρ1,

Iσσ =
2

σ2
+
α(1+3α2)cα
σ2π(1+α2)2

+
α2

σ2
η2 +

β2

σ2
ρ2,

Iσα =
cα(1−α2)

σπ(1+α2)2
− α
σ
η2,

Iσβ = −β
σ
ρ2,

Iαα = − c2
α

π2(1+α2)2
+η2,
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Iαβ = 0,

Iββ = ρ2,

where ξ = E
(
ψ(βZ)
Ψ(βZ)

)
, τ = E

(
Z2ψ

2(βZ)
Ψ(βZ)

)
, ηk = E

(
Zk
(
φ(αZ)

Φ(α|Z|)

)2
)

, ρk =

= E

(
Zk
(
ψ(βZ)
Ψ(βZ)

)2
)

and δk = E
(

sgn(Z)Zk
(
φ(αZ)

Φ(α|Z|)

))
must be evaluated numer-

ically, with Z ∼ ESNC(α,β).

Table 1: Estimated parameters and log-likelihood values for the models N, SNC, MIX, ETN and ESNC for

the N-Cream variable. The corresponding standard errors are in parentheses.

MLE N SNC MIX ETN ESNC

µ 7.577(0.110) 9.142(0.161) 6.082(1.203) 6.712(0.117) 6.717(0.104)

σ 1.712(0.078) 2.320(0.152) 1.558(0.498) 1.783(0.096) 1.781(0.094)

α − −4.095(1.155) − 1.855(0.808) 1.863(0.810)

β − − − 0.590(0.122) 1.062(0.267)

µ1 − − 8.435(0.257) − −
σ1 − − 1.097(0.138) − −
p − − 0.364(0.245) − −

Log-lik −469.586 −466.036 −461.125 −463.671 −461.555

AIC 943.172 938.072 932.250 935.342 931.110
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Figure 2: Histogram for the N-Cream variable. The curves represent densities fitted by maximum likelihood.
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Table 2: MLEs for the ESNC distribution.

µ σ α β n µ̂(SD) σ̂(SD) α̂(SD) β̂(SD)

0 1 4 4 100 0.014 (0.007) 0.983 (0.009) 5.155 (0.507) 4.312 (0.173)

0 1 4 4 300 0.005 (0.002) 0.992 (0.003) 4.830 (0.197) 4.114 (0.053)

0 1 4 4 500 0.006 (0.001) 0.995 (0.002) 4.698 (0.120) 4.038 (0.031)

0 1 4 2 100 0.007 (0.007) 0.991 (0.009) 5.061 (0.494) 2.175 (0.082)

0 1 4 2 300 0.001 (0.002) 0.996 (0.003) 4.886 (0.196) 2.053 (0.025)

0 1 4 2 500 0.001 (0.001) 0.997 (0.002) 4.690 (0.120) 2.033 (0.015)

0 1 4 0 100 -0.011 (0.008) 1.021 (0.008) 4.625 (0.422) 0.031 (0.026)

0 1 4 0 300 -0.005 (0.003) 1.006 (0.003) 5.000 (0.195) 0.015 (0.007)

0 1 4 0 500 -0.003 (0.002) 1.003 (0.002) 4.877 (0.122) 0.009 (0.004)

0 1 2 4 100 0.044 (0.009) 0.977 (0.009) 2.801 (0.268) 4.148 (0.184)

0 1 2 4 300 0.028 (0.003) 0.988 (0.003) 2.540 (0.100) 3.937 (0.056)

0 1 2 4 500 0.021 (0.002) 0.990 (0.002) 2.440 (0.063) 3.910 (0.033)

0 1 2 2 100 0.035 (0.010) 0.985 (0.009) 2.503 (0.222) 2.043 (0.083)

0 1 2 2 300 0.020 (0.003) 0.994 (0.003) 2.366 (0.087) 1.980 (0.026)

0 1 2 2 500 0.014 (0.002) 0.995 (0.002) 2.298 (0.054) 1.978 (0.016)

0 1 2 0 100 -0.006 (0.011) 1.020 (0.008) 2.149 (0.183) 0.016 (0.027)

0 1 2 0 300 -0.003 (0.004) 1.006 (0.003) 2.175 (0.077) 0.004 (0.008)

0 1 2 0 500 -0.002 (0.002) 1.004 (0.002) 2.156 (0.050) 0.002 (0.004)

0 1 0 4 100 0.008 (0.011) 1.207 (0.098) 0.376 (0.196) 5.713 (0.526)

0 1 0 4 300 -0.003 (0.005) 1.149 (0.025) 0.143 (0.056) 4.832 (0.128)

0 1 0 4 500 -0.004 (0.004) 1.118 (0.014) 0.077 (0.033) 4.591 (0.071)

0 1 0 2 100 0.035 (0.012) 1.164 (0.084) 0.283 (0.162) 2.479 (0.228)

0 1 0 2 300 0.031 (0.006) 1.089 (0.019) 0.099 (0.044) 2.139 (0.058)

0 1 0 2 500 0.027 (0.004) 1.068 (0.009) 0.040 (0.024) 2.063 (0.031)

0 1 0 0 100 -0.008 (0.014) 1.125 (0.048) 0.469 (0.123) 0.027 (0.054)

0 1 0 0 300 0.005 (0.007) 1.087 (0.014) 0.107 (0.032) -0.010 (0.017)

0 1 0 0 500 -0.001 (0.005) 1.062 (0.007) 0.036 (0.016) -0.001 (0.011)

0 1 -2 0 100 0.005 (0.003) 1.234 (0.348) -2.446 (0.805) 0.012 (0.352)

0 1 -2 0 300 0.002 (0.002) 1.258 (0.185) -2.502 (0.422) 0.010 (0.110)

0 1 -2 0 500 0.001 (0.001) 1.248 (0.124) -2.499 (0.285) 0.002 (0.067)

0 1 -4 0 100 0.002 (0.002) 0.902 (0.301) -3.539 (1.270) 0.077 (0.465)

0 1 -4 0 300 0.001 (0.001) 0.925 (0.139) -3.654 (0.587) 0.014 (0.154)

0 1 -4 0 500 0.000 (0.001) 0.938 (0.098) -3.714 (0.414) 0.003 (0.081)

0 1 -2 4 100 -0.012 (0.003) 1.007 (0.279) -1.937 (0.679) 5.233 (1.322)

0 1 -2 4 300 -0.010 (0.002) 0.970 (0.112) -1.858 (0.274) 4.417 (0.467)

0 1 -2 4 500 -0.007 (0.001) 0.969 (0.076) -1.871 (0.184) 4.171 (0.293)

0 1 -2 2 100 -0.017 (0.003) 1.116 (0.317) -2.175 (0.750) 3.057 (0.853)

0 1 -2 2 300 -0.015 (0.002) 1.057 (0.124) -2.036 (0.293) 2.609 (0.304)

0 1 -2 2 500 -0.013 (0.001) 1.074 (0.091) -2.083 (0.214) 2.489 (0.203)

0 1 -4 4 100 -0.007 (0.002) 0.904 (0.358) -3.549 (1.520) 4.468 (1.652)

0 1 -4 4 300 -0.005 (0.001) 0.921 (0.164) -3.629 (0.690) 4.114 (0.699)

0 1 -4 4 500 -0.003 (0.001) 0.939 (0.112) -3.712 (0.473) 4.052 (0.471)

0 1 -4 2 100 -0.007 (0.002) 0.958 (0.377) -3.783 (1.579) 2.662 (1.134)

0 1 -4 2 300 -0.005 (0.001) 0.973 (0.167) -3.847 (0.698) 2.331 (0.431)

0 1 -4 2 500 -0.003 (0.001) 0.965 (0.106) -3.821 (0.444) 2.168 (0.246)
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