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Abstract

In this paper we investigate an extension of the power-normal model, called the alpha-power

model and specialize it to linear and nonlinear regression models, with and without correlated

errors. Maximum likelihood estimation is considered with explicit derivation of the observed and

expected Fisher information matrices. Applications are considered for the Australian athletes

data set and also to a data set studied in Xie et al. (2009). The main conclusion is that the

proposed model can be a viable alternative in situations were the normal distribution is not the

most adequate model.
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1. Introduction

Linear and nonlinear regression models are statistical techniques typically used for mod-

eling and studying relationships between variables in several areas of human knowledge

such as biomedical and agricultural sciences, engineering, and many others, being ex-

tremely useful for data analysis. One important step in regression analysis is parameter

estimation, usually made under the assumption of normality. However, there are sit-

uations were the normal assumption is not realistic and several distributions have been

suggested as alternatives to the normal model. Among such models we have the Student-

t, logistic and exponential power distributions (Cordeiro et al., 2000 and Galea et al.,

2005), whereas for the asymmetric nonlinear model we have only the work of Cancho
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et al. (2008). In this paper we suggest an alternative asymmetric model, the alpha-power

model, for fitting linear and nonlinear regression models. The maximum likelihood

approach is used for parameter estimation and the normality assumption can be tested

using the likelihood ratio statistics since large sample properties are satisfied for the

maximum likelihood estimator (Pewsey et al., 2012). Real data applications reveal that

the model considered can be a viable alternative to existing asymmetric models in the

literature.

The paper is organized as follows. In Section 2 asymmetric models are reviewed

and some of their main properties discussed. Emphasis is placed on the alpha-power

model, a special case of which is the power-normal model (Gupta and Gupta, 2008).

In Section 3 a general definition of asymmetric regression models is presented and

previous works on linear and nonlinear versions are listed. Section 4 is devoted to the

study of the linear multiple regression model with power-normal errors. Inference via

maximum likelihood for this model is also considered. The nonlinear power-normal

model is considered in Section 5. Estimation is considered via maximum likelihood. The

autoregressive model is studied in Section 6, with inference via maximum likelihood.

A score type statistic is developed for testing null correlation. A small-scale Monte

Carlo study is conducted in Section 7, including a study on model robustness. The main

conclusion is that estimators under the regression model studied are fairly robust against

data contamination. Results of two real data applications are reported illustrating the

usefulness of the models considered in Section 8. In Section 9 (Appendix), we present

the elements for the observed information matrices for the models considered in the

previous Sections.

2. Skew distributions

Lehmann (1953) studied the family of distributions with a general distribution function

given by

FF(z;α) = {F(z)}α, z ∈ R, (1)

where F is a distribution function and α is a rational number.

Durrans (1992), in a hydrological context, extended Lehmann’s model by consid-

ering α real (and positive) for the special case F = Φ, the distribution function of the

normal distribution. We consider in this paper an extension of Lehmann’s model, which

we call the alpha-power model, with density function given by

ϕ f (z;α) = α f (z){F(z)}α−1, z ∈ R, α ∈ R+, (2)

where F is an absolutely continuous distribution function with density function f = dF .

Properties for a particular case of this distribution (with F = Φ, the distribution function
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of the normal distribution), were studied in Gupta and Gupta (2008). We use the notation

Z ∼ PF(α). We refer to this model as the standard alpha-power distribution (see also

Pewsey et al., 2012). This is an alternative to asymmetric models with higher amounts

of asymmetry and kurtosis as is the case with the skew-normal distribution (Azzalini,

1985), see also Mudholkar and Hutson (2000) for some special cases. Parameter α is a

shape parameter that controls the amount of asymmetry in the distribution. Extensions

of the power-normal model are also considered in Rego et al. (2012).

In the particular case that F = Φ, the distribution function of the normal distribution,

Z is said to follow a power-normal distribution (denoted PN(α)) with density function

given by

ϕ(z;α) = αφ(z){Φ(z)}α−1, z ∈ R. (3)

If Z is a random variable from a standard PF (α) distribution then the location-scale

extension of Z, X = ξ+ηZ, where ξ ∈ R and η ∈ R+, has probability density function

given by

ϕF(x;ξ,η,α) =
α

η
f

(
x−ξ
η

){
F

(
x−ξ
η

)}α−1

. (4)
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Figure 1: Density ϕZ(z;α) for α equals to 5 (solid line), 2 (dashed line), 1 (dotted line) and 0.5 (dashed

and dotted line).
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We will denote this extension by using the notation X ∼ PF(ξ,η,α). Notice that this

model can be further extended by considering ξi = xT
i β replacing ξ, where β is an

unknown vector of regression coefficients and xi a vector of known regressors possibly

correlated with the response vector.

As can be deduced from Figure 1, parameter α controls also the distribution kurtosis.

Moreover, it can be noticed that for α> 1, the kurtosis is greater than that of the normal

distribution and, for 0 < α< 1, the opposite is observed.

Pewsey et al. (2012) derived the Fisher information matrix for the location-scale

version of the power-normal model and have shown that it is not singular for α = 1.

We recall that the Fisher information matrix for the skew-normal distribution (Azzalini,

1985) is singular under the symmetry hypothesis. Hence, with the power-normal model,

normality can be tested using ordinary large sample properties of the likelihood ratio

statistics. They also found the asymmetry and kurtosis ranges to be [−0.6115,0.9007]

and [1.7170,4.3556], respectively. This illustrates the fact that the model is more

flexible, respective to kurtosis, than the model skew-normal (Azzalini, 1985), for which

the kurtosis range is given by [3,3.8692).
A generalization for the PN(α) model is given in Eugene et al. (2002), by introduc-

ing the beta-normal distribution, denoted BN(α,β), with BN(α,1)=PN(α). Therefore,

model BN(α,β) is more flexible than model PN(α). However, model BN(α,β) contains

two parameters to be estimated and the asymmetry and kurtosis ranges for both mod-

els are the same, namely [−0.6115,0.9007] and [1.7170,4.3556], respectively. General

properties of the model BN where studied by Gupta and Nadarajah (2004) and Rego et

al. (2012).

3. The asymmetric regression model

The multiple regression model is typically represented by

yi = xT
i β+εi, i = 1,2, . . . ,n, (5)

where β is a vector of unknown constants and xi are values of known explanatory vari-

ables. The error terms εi are independent random variables with N(0,σ2) distribution.

It may occur that the symmetry assumption is not an adequate assumption for the er-

ror term so that an asymmetric model may present a better fit for the data set under

study. As seen in the literature, some asymmetric distributions that can be considered are

the epsilon-skew-normal (ESN, Mudholkar and Hutson, 2000) distribution, the skew-

exponential power (SEP, see Azzalini, 1986) distribution and the Beta-Normal (BN)

distribution, among others. Hutson (2004) replaces in (5) the normal distribution by

the ESN distribution, DiCiccio and Monti (2004) consider that the error terms follow

model SEP while Razzaghi (2009) consider the BN distribution for fitting a quadratic
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dose-response modeling. Asymmetric nonlinear regression is studied in Cancho et al.

(2008) by considering that the error terms follow a skew-normal model distribution. Xie

et al. (2009) studied the case where the error term follows the skew-t-normal model (see

Gómez et al., 2007).

4. The multiple regression model with PN errors

In this section, we assume under the ordinary multiple regression model that the error

term follows a PN (denoted PNR) distribution with parameters 0, ηe and α, that is,

εi ∼ PN(0,ηe,α) for i = 1,2, . . . ,n.

Hence, it follows that the density function of εi is given by

ϕ(εi;β ,ηe,α) =
α

ηe

φ

(
yi −xT

i β

ηe

){
Φ

(
yi −xT

i β

ηe

)}α−1

, i = 1,2, . . . ,n, (6)

Therefore, it follows that yi given xi, (yi|xi), also follows a PN distribution, that is,

yi|xi ∼ PN(xT
i β ,ηe,α), i = 1,2, . . . ,n, (7)

with location parameter xT
i β , i = 1,2, . . . ,n, scale parameter ηe and shape parameter α.

Under the PN model,

E(εi) = αηe

∫ 1

0
Φ−1(z)zα−1dz 6= 0

so that the expected value of the error term is not null as is the case under normality.

Therefore, E(yi) 6= xT
i β and we have to make the following correction to obtain the

regression line as the expected value of the response variable: β∗
0 = β0 + µε, where

µε = E(εi). Thus,

E(yi) = xT
i β

∗ where β∗ = (β∗
0 ,β1, . . . ,βp)

T.

The next section discusses maximum likelihood estimation for the corrected model.

4.1. Inference for the multiple PNR model

We discuss in the following maximum likelihood estimation for the multiple power-

normal regression model. A detailed derivation of the Fisher information matrix is

considered, resulting that it is nonsingular at the vicinity of symmetry.
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4.2. Likelihood and score functions

Considering now a matrix notation where y denotes the vector with entries yi and

dimension (n×1) and X the (n× (p+1))-matrix with rows xT
i , the likelihood function

for θ =(βT,ηe,α)
T given a random sample of size n, y=(y1,y2, . . . ,yn)

T, can be written

as

ℓ(θ ;y) = n log

(
α

ηe

)
− 1

2η2
e

(y−Xβ)T(y−Xβ)+(α−1)
n

∑
i=1

log

{
Φ

(
yi −xT

i β

ηe

)}
,

with score function:

U(β) =
1

η2
e

XT(y−Xβ)− α−1

ηe

XTΛ1, U(α) = n

(
1

α
+u

)
, (8)

U(ηe) =− n

ηe

+
1

η3
e

(y−Xβ)T(y−Xβ)− α−1

η2
e

(y−Xβ)T
Λ1 (9)

where

Λ1 = (w1, . . . ,wn)
T and ui = log

{
Φ

(
yi −xT

i β

ηe

)}
,

with wi = φ
(

yi−xT
i β

ηe

)
/Φ

(
yi−xT

i β

ηe

)
, for i = 1,2, . . . ,n. After some algebraic manipula-

tions, maximum likelihood estimating equations are given by

β = β̂MQ − (α−1)η(XTX)−1XTΛ1, α=−1

u
, (10)

η=
(1−α)(y−Xβ)TΛ1

2n
+

√
(1−α)2(y−Xβ)TΛ1ΛT

1 (y−Xβ)+4n(y−Xβ)T(y−Xβ)

2n
, (11)

where β̂MQ = (XTX)−1XTy.

Hence, the maximum likelihood estimator for the parameter vector β is equal to the

least squares estimator for β plus the symmetry correcting term. No analytical solutions

are available for the likelihood equations and hence they have to be solved numerically.

For the simple linear regression model, namely p = 1, the following system of

equations results

β1 = ηe(α−1)
Sxw

S2
x

+
Sxy

S2
x

, β0 =−ηe(α−1)w+ y−β1x, α=−1

u
,
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and

ηe =
(1−α)(wy−β0w−β1wx)

2n
+

√
(1−α)2(wy−β0w−β1wx)2 +4n∑

n
i=1(yi −β0 −β1xi)2

2n

with

S2
x =

n

∑
i=1

(xi − x)2/n, Sxy =
n

∑
i=1

(xi − x)(yi− y)/n and Swx =
n

∑
i=1

(wi −w)(xi− x)/n,

where w=∑
n
i=1 wi/n, u=∑

n
i=1 ui/n, x=∑

n
i=1 xi/n, x2 =∑

n
i=1 x2

i /n, y=∑
n
i=1 yi/n, xy=

∑
n
i=1 xiyi/n, wx = ∑

n
i=1 wixi/n and wy = ∑

n
i=1 wiyi/n.

For α = 1, the model with normal error terms follow and the estimators reduce to the

well known β̂1 =
Sxy

S2
x
, β̂0 = y− β̂1x and η̂e =

√
1
n ∑

n
i=1(yi − β̂0 − β̂1xi)2. To initialize

the likelihood approach, we can take as initial values the vector β̂ and for parameter ηe

the ones obtained by the least squares approach. They can be computed as follows: for

ε∗i = εi−µε, we have that E(ε∗) = 0 and Var(ε∗) =η2
eΦ2(α), where Φ2 is the variance

of the random variable PN(0,1,α).

Hence, after minimizing the error sum of squares, namely,

n

∑
i=1

ε∗2
i =

n

∑
i=1

(
yi −xT

i β
∗
)2

we obtain the least squares estimators of β∗ and ηe, which are given by:

β̂
∗
= (XTX)−1XTy and η̂2

e =
Φ−1

2 (α̂)

n−2

n

∑
i=1

(
yi − β̂∗

0 − β̂1xi

)2

.

On the other hand, an initial value for α can be obtained by fitting the PN model for

the errors obtained or by using the elemental percentile approach of Castillo and Hadi

(1995), assuming β and ηe known (usually computed using the least-squares approach).

The elements needed to compute the observed information matrix are given in Ap-

pendix 10.1. The expected (Fisher) information matrix follows then by taking expecta-

tions of those components (multiplied by n−1).

Approximation Np+3(θ ,Σθ̂ ) can be used to construct confidence intervals for θr,

which are given by θ̂ r ∓ z1−δ/2

√
σ̂(θ̂ r), where σ̂(·) corresponds to the r-th diagonal

element of the matrix Σθ̂ and z1−δ/2 denotes 100(δ/2)-quantile of the standard normal

distribution.
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For the simple linear regression model, that is, p = 1, denoting the elements of the

observed information matrix by

iβ0β0
, iβ1β0

, iηeβ0
, iαβ0

, . . . , iηeηe , iαα,

and making a jk = E
(
W jY k

)
for k = 0,1,2,3 and j = 0,1,2, we obtain the expected

information matrix, the elements of which are given in the appendix.

5. The alpha-power nonlinear regression model

A more general model can be defined replacing the linearity assumption by a nonlinear

one. Therefore, we define the nonlinear alpha-power model as

yi = f (β ,xi)+εi, i = 1,2, . . . ,n,

where yi is the response variable, f is an injective continuous and twice differentiable

function with respect to the parameter β , xi is an explanatory variable vector and εi are

independent and identically distributed PF(0,η,α) random variables with

µε = αη
∫ 1

0
zα−1F−1(z)dz.

As in the linear case, E(Yi) = f (β ,xi)+µε, so that corrections are required so that the

error term is unbiased for zero, that is,

yi ∼ PF( f (β ,xi),η,α).

In the PN situation we have the density function

ϕ(yi;β ,α) =
α

η
φ

(
yi − f (β ,xi)

η

){
Φ

(
yi − f (β ,xi)

η

)}α−1

. (12)

which we denote by yi|xi ∼ PN( f (β ,xi),η,α). The log-likelihood function (disregard-

ing constants) for the parameter θ = (βT,η,α)T for a random sample of size n from yi

with distribution PN( f (β ,xi),η,α), is given by

ℓ(θ ;X,y)= n log

(
α

η

)
− 1

2η2

n

∑
i=1

(yi − f (β ,xi))
2+(α−1)

n

∑
i=1

log

{
Φ

(
yi − f (β ,xi)

η

)}
.
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The score function U(θ ) = (U(β),U(η),U(α))T is given by

U(βi) =
1

η2

n

∑
i=1

(yi − f (β ,xi))
∂ f (β ,xi)

∂βi

− α−1

η

n

∑
i=1

wi

∂ f (β ,xi)

∂βi

, U(α) = n

(
1

α
+u

)
,

U(η) =− n

η
+

1

η3

n

∑
i=1

(yi − f (β ,xi))
2 − α−1

η2

n

∑
i=1

(yi − f (β ,xi))wi,

with ui = Φ

(
yi− f (β ,xi)

η

)
and wi =

φ
(

yi− f (β ,xi)
η

)

Φ

(
yi− f (β ,xi)

η

) .

Differentiating the scores above, we arrive at the observed information matrix,

see appendix. Hence, the maximum likelihood estimator for θ , can be obtained by

implementing the following Newton-Raphson type iterative procedure:

θ̂
(k+1)

= θ̂ (k)+ [J(θ̂
(k)
)]−1U(θ̂

(k)
), (13)

where J(θ ) =− ∂ 2ℓ(θ )

∂θ∂θ T
.

6. Nonlinear autoregressive alpha-power-normal model

We consider now the extension of the nonlinear-normal model with autoregressive errors

to the PN distribution. Hence, the stochastic representation for the nonlinear PN model

with autoregressive errors is given by

yi = f (β ,xi)+εi, with εi = ρεi−1 +ai, i = 1,2, · · · ,n, (14)

where yi, i = 1, . . . ,n are the observed responses, the xi, i = 1, . . .n are known covariate

vectors with ρ as the autoregressive coefficient satisfying |ρ| < 1; β is an unknown p-

dimensional vector of real parameters, f is a known continuous and twice differentiable

function with respect to β , ai are independent random variables with ai ∼ PN(0,η2,α)
and ε0 = 0.

It then follows that the expectation of the random response is

E(Yi) = f (β ,xi)+E(ai)
i−1

∑
k=0

ρk, (15)
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i = 1, . . . ,n, where E(ai) is the expectation of a random variable with PN(0,η2,α)

distribution.

6.1. Maximum likelihood estimation

Given a random sample of size n from the above model, the log-likelihood function for

parameter vector θ = (ρ,βT,η2,α)T, can be written as

ℓn(θ ;y)= n

{
log(α)− log(η)− 1

2
log(2π)

}
−

n

∑
i=1

(εi −ρεi−1)
2

2η2
+(α−1)

n

∑
i=1

log{Φ(zi)},

with zi =
εi−ρεi−1

η
. Therefore, for wi =

φ(zi)
Φ(zi)

, Di = − ∂ f (β ,xi)
∂ β + ρ

∂ f (β ,xi−1)
∂ β and Qi =

−wi(zi +wi), i = 1,2, . . . ,n, the score function Uθ = (Uρ,U
T
β ,Uη2 ,Uα)

T has elements:

U(ρ) =
n

∑
i=1

[
ai

η2
− α−1

η
wi

]
εi−1, U(β) =

n

∑
i=1

[
ai

η2
− α−1

η
wi

]
Di,

U(η2) =
n

∑
i=1

[
− 1

2η2
+

a4
i

2η4
− α−1

2η3
aiwi

]
, U(α) =

n

α
+

n

∑
i=1

log{Φ(zi)},

where ai = εi−ρεi−1 and εi = yi− f (β ,xi). Hence, taking Gi =− ∂ 2 f (β,xi)
∂ β ∂ βT +ρ

∂ 2 f (β,xi−1)
∂ β ∂ βT ,

we obtain the Hessian matrix, see Appendix, from which the expected information can

be obtained.

Therefore, the maximum likelihood estimators can be obtained by iteratively solving

the equation:

θ̂
(k+1)

= θ̂
(k)

+[J(θ̂
(k)
)]−1U(θ̂

(k)
), (16)

where J(θ ) =− ∂ 2ℓ(θ )

∂θ∂θ T
.

6.2. Score statistics for testing ρ

In the particular case where ρ = 0, the autoregressive model (14) reduces to the

nonlinear PN regression model. Hence, it is important to verify whether this is the case

or not. Considering β , η2 and α as nuisance parameters, we want to test the hypotheses

H0 : ρ = 0 versus H1 : ρ 6= 0.
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It can be shown that the score statistics (Cox and Hinkley, 1974) for testing H0 is

given by :

SC1 = [U2
ρJρρ(θ)]

θ= ˆθ 0
, (17)

where Jρρ is the block of J−1 corresponding to ρ and θ̂ 0 is the maximum likelihood es-

timator of θ . Under H0, statistics (17) follows, asymptotically the chi-square distribution

(χ2
1 ) with one degree of freedom.

7. Simulation study

We report next results of a simulation study designed at investigating the performance

of the maximum likelihood estimators for parameters β0, β1 and ηe. We simulated 1000

samples of sizes n = 50, 75 and 100. Without loss of generality we took ηe = 1. Values

for X were generated from the U(0,1), the uniform distribution on the (0,1) interval and

p = 1, with β0 = 1.5 and β1 =−2.5. Moreover, we took εi ∼ PN(0,ηe,α). Estimators

performance were evaluated by computing the relative empirical bias (RB = empirical

bias/parameter value) and the square root of the empirical mean squared error (
√

MSE)

and the covering probability of the 95% large sample intervals (discussed above) or,

equivalently, the rejection rate for testing β1 = 0 at the 5% significance level. This study

was implemented using software R.

Table 1: Empirical RB and
√

MSE for the simple PNR model.

α= 0.75 α= 1.50 α= 2.25

n θ̂ RB(%)
√

MSE 1−δ RB(%)
√

MSE 1−δ RB(%)
√

MSE 1−δ
β̂0 7.96 1.25 0.66 4.06 1.26 0.70 5.93 1.32 0.74

β̂1 0.21 0.16 0.77 0.13 0.13 0.79 0.11 0.11 0.83

50 η̂ 15.58 0.52 0.85 12.08 0.46 0.83 12.05 0.46 0.84

α̂ 58.81 1.36 0.62 84.57 3.22 0.67 101.80 5.51 0.70

β̂0 5.07 1.11 0.66 2.19 1.12 0.76 3.89 1.12 0.82

β̂1 0.16 0.13 0.83 0.12 0.11 0.87 0.10 0.09 0.90

75 η̂ 10.85 0.44 0.82 5.53 0.38 0.83 4.29 0.36 0.88

α̂ 46.53 1.17 0.65 76.44 2.86 0.72 92.73 4.84 0.79

β̂0 1.10 0.47 0.80 1.01 0.51 0.92 2.64 0.53 0.93

β̂1 0.06 0.04 0.94 0.02 0.04 0.94 0.04 0.03 0.95

500 η̂ 0.56 0.16 0.80 0.46 0.16 0.92 0.47 0.15 0.93

α̂ 12.08 0.47 0.78 16.09 1.13 0.88 21.51 1.88 0.88
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Table 2: Empirical RB and
√

MSE for simple regression model with contaminated model.

α= 0.75 α= 1.50 α= 2.25

n θ̂ RB(%)
√

MSE 1−δ RB(%)
√

MSE 1−δ RB(%)
√

MSE 1−δ
β̂0 6.61 1.22 0.63 8.74 1.28 0.68 5.98 1.28 0.71

β̂1 0.24 0.16 0.75 0.21 0.13 0.80 0.15 0.12 0.83

50 η̂ 15.12 0.51 0.85 13.69 0.48 0.81 11.06 0.44 0.84

α̂ 56.72 1.32 0.59 75.31 3.12 0.64 92.29 5.29 0.67

β̂0 5.82 1.12 0.68 7.11 1.14 0.73 3.77 1.13 0.76

β̂1 0.16 0.13 0.82 0.16 0.10 0.86 0.18 0.08 0.85

75 η̂ 10.94 0.44 0.83 9.47 0.40 0.82 7.49 0.37 0.85

α̂ 47.76 1.22 0.65 60.14 2.72 0.70 70.91 4.39 0.72

β̂0 1.66 0.49 0.80 2.20 0.53 0.92 3.68 0.54 0.93

β̂1 0.06 0.04 0.93 0.06 0.04 0.94 0.04 0.03 0.94

500 η̂ 0.46 0.16 0.80 0.13 0.15 0.92 0.54 0.15 0.94

α̂ 13.70 0.50 0.78 19.67 1.22 0.89 24.79 2.01 0.89

Results in Table 1 show that the relative bias and
√

MSE for the maximum likelihood

estimators for parameters ηe, β0 and β1 decreases as the sample sizes increase which

is expected. It can also be noted that the relative bias can be large in small and

moderate sample sizes situations. As parameter α increases, relative bias also increases

for parameters ηe and β̂0 which is also expected. Relative bias for β̂1 is below 1.5%. To

reduce bias for β0 procedures such as bootstrap and jacknife could be implemented.

We also developed a simulation study designed at evaluating the robustness of

the estimation procedure under the PN regression model obtained by contaminating

the error terms with a skew-normal random variable. It was considered that the first

observation was generated according to the distribution SN(0,1,−1) + PN(0,1,α).
Maximum likelihood estimators were than computed for each generated sample, as

described above and Table 1 presents the results. It can be deduced from the table that

empirical RB and
√

MSE does not seem affected by changes in the model generating

the data.

8. Numerical illustrations

8.1. Linear model

The following illustration is based on the Australian athletes data set available for down-

loading at the directory http://azzalini.stat.unipd.it/SN/. The linear model considered is
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B f ati = β0 +β1Wti +β2sexi +εi, i = 1,2, . . . ,202,

where B f ati is the body fat percentage for the i-th athlete, and covariates Wti and sexi

the weight and sex, respectively, for the i-th athlete; variable sex is dichotomized with 1

for male and zero for female. A residual analysis has indicated that symmetric models

may not be the most adequate ones and that an asymmetric model can present a better

fit, see Table 3, where quantities
√

b1 and b2 indicate sample asymmetry and kurtosis

coefficients.

Table 3: Summary statistics for estimated residuals under normality.

n Mean Variance
√

b1 b2

202 0.0050 11.8431 0.6030 3.9321

We fitted linear regression models under the assumption that model errors follow

an asymmetric distribution, namely the the skew-normal (SNR), the skew-tν (StR), the

student con ν degrees of freedom and power-normal (PN) distributions. For estimating

under skew-normal and skew-Student-t R Development Core Team (2014) package is

used, which uses the centred parametrization (CP), namely E(Y) = xTβ and Var(Y ) =

η2 (see Chiogna (2005) and Pewsey (2000)), whereas for model PN we use the optim

program in the R package.

We use the AIC (Akaike, 1974), written as AIC = −2ℓ̂(·)+ 2k and BIC, written as

BIC=−2ℓ̂(·)+(log(n))k, where k is the number of unknown parameters, for comparing

the normal and power-normal which are nested models. The best model is the one with

the smallest AIC or BIC.

Moreover, the results in Table 4 present estimates for model parameters. It also

reveals that, according to the PN regression model, % of body fat depends on weight

and sex of the athlete. Estimating β∗
0 in the PN regression model leads to β̂∗

0 = 0.39.

Table 4: Estimates (standard error) for normal and PN linear models.

Parameters Normal model SNC model St14 model PN model

β0 1.62 (1.43) 2.91 (1.34) −0.52 (1.35) −5.97(2.00)

β1 0.24 (0.02) 0.21 (0.02) 0.21 (0.02) 0.24 (0.02)

β2 −12.25 (0.57) −11.10 (0.71) −11.09 (0.68) −11.25 (0.60)

η 3.43 (0.17) 3.43 (0.18) 4.47 (0.75) 5.29 (0.48)

α 0.57 (0.14) 2.07 (0.50) 5.38 (1.83)

The model εi ∼ PN(0,5.29,5.38) seems to present a good fit for the data set under

study. A more emphatic justification for using a PN type model comes from testing the

normality assumption, that is, the hypotheses
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H0 : α= 1 versus H1 : α 6= 1,

by using the likelihood ratio statistics,

Λ =
ℓN(θ̂ )

ℓPN(θ̂ )
,

which, for the data set under study, leads to −2log(Λ) = 4.97, so that p-value =

Prob(χ2
1 > 4.97)< 0.05. with strong indication against the null hypothesis.

Computing AIC and BIC for normal and PN regression models lead to AIC =

1079.54 and BIC = 1092.77 and AIC = 1076.56 and BIC = 1093.10, respectively.

According to the values obtained for AIC and BIC, the power-normal (PN) linear

regression model presents the better fit when compared with normal linear model.

We use Voung (1989) approach (generalized LR statistic) for comparing the skew-

normal (SNR), skew-Student-t (StR) and power-normal (PNR) linear non-nested models

fitted to the data. A description of the procedure is described next. Being Fθ and Gζ
two non-nested models and f (yi|xi,θ ) and g(yi|xi,ζ) the corresponding densities, the

likelihood ratio statistics to compare both models is given by

LR(θ̂ , ζ̂) =

{
1√
n

n

∑
i=1

log
f (yi|xi, θ̂ )

g(yi|xi, ζ̂)

}
,

which does not follow a chi-square distribution. To overcome this problem, Vuong

(1989) proposed an alternative approach based on the Kullback-Liebler divergence

criterion. Based on the divergence between each model and the true process generating

the data, namely the model h0(y|x), one arrives at the statistics

TLR,NN =
1√
n

LR(θ̂ , ζ̂)

ŵ
, (18)

where

ŵ2 =
1

n

n

∑
i=1

(
log

f (yi|xi, θ̂ )

g(yi|xi, ζ̂)

)2

−
(

1

n

n

∑
i=1

log
f (yi|xi, θ̂ )

g(yi|xi, ζ̂)

)2

.

For strictly non-nested models, it can be shown that the statistic TLR,NN converges in

distribution to a standard normal distribution under the null hypothesis. Thus, the null

hypothesis is not rejected if |TLR,NN| ≤ zp/2. On the other hand, we reject at significance

level p the null hypothesis of equivalence of the models in favor of model Fθ being

better (or worse) than model Gζ if TLR,NN > zp (or TLR,NN <−zp).
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For testing PNR versus SNR, we obtain TLR,NN = 22.59 (p-value < 0.05) and for the

PNR versus RSt14 model, TLR,NN = 0.61 (p-value > 0.05). Therefore, the PNR model is

significantly better than the SNR model according to the generalized LR statistic. In a

similar fashion it can be concludes that there is no significant difference between models

PNR and RSt14. However, favouring model PNR we have the fact that it involves one

less parameter. Authors Lange et al. (1989), Berkane et al. (1994), Fernández and Steel

(1999), Taylor and Verbyla (2004) and Leiva et al. (2008), all reported dificulties in

estimating the degrees of freedom parameter.

We also computed the scaled residuals ei = (yi − xT
i β̂)/η̂ to investigate model fit.

Figures 2-(a), (b) and (c) and 3-(a), (b) and (c) depict the histograms and Q-Q plots for

the scaled residuals under normal, SNR and PNR models, which also indicate a good fit

for the PNR model.
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Figure 2: Graphs for residuals, of the fitted models. (a) Normal, (b) SN and (c) PN.
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Figure 3: Q-qplots for the scaled residuals Z, from the fitted models. (a) Normal, (b) SN and (c) PN.
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8.2. Nonlinear model with correlated errors

In the following we present an application of the PN model fitting to the palm oil

data set presented in Foong (1999) and studied in Xie et al. (2009) using a skew-

normal nonlinear model. This data set was previously analysed in Azme et al. (2005),

were parameter estimates are obtained under nonlinear growth curve models using

Marquardat’s iterative procedure. They found that the best fit is presented by the logistic

growth curve model (see, Ratkowsky, 1983), followed by the Gompertz model, which

was followed by the Morgan-Mercer-Flodin, Chapman-Richard model. Cancho et al.

(2008) also analysed the model using a nonlinear skew-normal model with logistic

growth. We focus now on analyzing the data set under a PN nonlinear regression model

with logistic growth. Therefore, the model considered can be written as

yi =
β1

1+β2 exp(−β3xi)
+εi (19)

with εi = ρεi−1 +ai, ai ∼ PN(0,η2,α), i = 1, . . . ,n.

We are now implementing the correlated nonlinear normal model with normally

distributed errors (NLCM) and the correlated nonlinear model with errors PN distributed

(NLCPN). As Table 5 reveals, according to both criteria (AIC and BIC), the nonlinear

PN model with correlated errors fits the data better.

Table 5: AIC and BIC for the oil palm data.

Statistics Log-likelihood AIC BIC

Normal −41.2656 92.5312 97.2534

PN −39.1004 90.2008 95.8674

Table 6: Parameter estimates (standard errors) for the following models: NLCN, NLCPN and NLPN.

NLCN NLCPN NLPN

Parameter estimate estimate estimate

ρ 0.3222(0.2757) 0.2574(0.2114) —

β1 37.5699(0.3038) 37.9163(0.4041) 38.8798(0.2485)

β2 11.4310(0.8327) 17.5880(1.2504) 17.5833(1.7888)

β3 0.5092(0.0227) 0.6140(0.0135) 0.6079(0.0172)

η2 5.5559(0.7392) 2.6815(0.3658) 1.2010(0.1550)

α — 0.7010(0.1564) 0.2547(0.0589)

We consider now testing the hypotheses H0 : α = 1 versus H1 : α 6= 1, that is,

a nonlinear normal model with correlated errors against a nonlinear PN model with

correlated errors. The likelihood ratio statistics for testing the above hypotheses, namely,

Λ = ℓNLCN(
ˆθ )

ℓNLCPN(
ˆθ )

, leads to −2log(Λ) = 4.3304, a value greater than the corresponding 5%
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chi-square critical values which is χ2
1,5% = 3.8414. Hence there is strong evidence that

the nonlinear PN model with correlated errors fit the oil palm data set far better than the

corresponding normal one.

Parameter estimates and standard errors for models NLPN, NLCN and NLCPN are

presented in Table 6.

Figure 4(a), presents the nonlinear fitted models graphs and (b), and the fitted

residuals for model PN, r̂i against r̂i−1 = r̂(1), under the assumption that ρ = 0; which

does not reveal presence of correlation. Therefore, we implement a nonlinear model

with errors PN(0,η,α), (NLPN) for which parameter estimates are given in Table 6.
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Figure 4: (a) Graphs for fitted models, NLCN (dashed line), NLCPN (solid line) and NLPN (mixed

(dashed-dotted) line); (b) graph for r̂i against r̂i−1.

9. Final discussion

In this paper we extended the power models in Pewsey et al. (2012) for the case of

regression models. Linear models were considered as well as a non-linear extension.

Emphasis was placed on the PN regression model situation. Estimation was performed

by implementing the maximum likelihood approach. Large sample point and interval

estimates were obtained by using the observed information (minus the inverse of the

Hessian matrix evaluated at the maximum likelihood estimates). The exact Fisher

information matrix is also derived and shown to be non-singular, so that large sample

distribution for the alternative likelihood ratio statistics is central chisquare. For some

comparisons, models are not nested so that an appropriate statistics with limiting normal

distribution is considered.

The methodology implemented presented satisfactory results when applied to real

data sets. Results of a small scale simulation indicate that the estimation approach leads
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to good parameter recovery and that for large sample sizes bias and mean square error

are significantly reduced. One of the applications is to a linear model applied to the

Australian athletes data set (available for downloading from the internet) previously

analysed by several other authors. It was seen that data present moderate to large

skewness so that the PN regression model can be a viable alternative. The second data

set that was analysed is the palm oil data set previously analysed by several authors.

It turned out that the non-linear model with PN errors fitted the data better than the

ordinary normal model.

10. Appendix

In this section we present in closed form the elements of the observed and expected

(Fisher) information matrices for the PNR type models considered in this. Their deriva-

tion (requiring extensive algebraic manipulations) extends results in Pewsey et al. (2012).

The relevance of the results rely on the fact one can conclude they are nonsingular so

that large sample properties of the maximum likelihood estimators hold for such models.

A similar discussion for skew-normal type models is considered in Azzalini (2013).

10.1. Observed information matrix for the PNR model

In this section we present the observed information matrix for the general PNR model.

jβTβ =
1

η2
e

XTX+
α−1

η2
e

XTΛ2X, jηeβ =
2

η3
e

XT(y−Xβ)+
α−1

η2
e

XTΛ3,

jηeηe =− n

η2
e

+
3

η2
e

n

∑
i=1

(
yi −xT

i β

ηe

)2

− 2(α−1)

η2
e

n

∑
i=1

(
yi −xT

i β

ηe

)
wi

+
α−1

η2
e

n

∑
i=1

(
yi −xT

i β

ηe

)3

wi +
α−1

η2
e

n

∑
i=1

(
yi −xT

i β

ηe

)2

w2
i

jαβ =
1

ηe

XTΛ1, jαηe =
1

η2
e

(y−Xβ)T
Λ1, jαα = n/α2,

where

Λ2 = diag

{(
yi −xT

i β

ηe

)
wi +w2

i

}

i=1,2,...,n
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and Λ3 = (a1,a2, . . . ,an)
T with

ai =

{(
yi −xT

i β

ηe

)2

wi +

(
yi −xT

i β

ηe

)
w2

i −wi

}

i=1,2,...,n

.

10.2. Information matrix for the simple PNR model

The elements of the FIM for the case p = 1 are given by

iβ0β0
=

{
1+
α−1

ηe

[a11 −a10(β0 +β1x)]+ (α−1)a20

}
/η2

e,

iβ1β0
=

{
x+
α−1

ηe

[
x(a11 −β0a10)−β1a10x2

]
+(α−1)a20x

}
/η2

e,

iηeβ0
=

1−α
η2

e

a10 +
1

η3
e

[2a01 +(α−1)a21− (2+(α−1)a20)(β0 +β1x)]+

+
α−1

η4
e

{
a12 +a10(β

2
0 +β

2
1 x2 +2β0β1x)−2a11(β0 +β1x)

}
,

iβ1β1
=

{
x2(1+(α−1)a20)+

α−1

ηe

[
a11x2 −a10(β0x2 +β1x3)

]}
/η2

e,

iηeβ1
=

1−α
η2

e

a10x+
1

η2
e

[
x(2(a01−β0)+(α−1)(a21−β0a20))−β1(2+(α−1)a20)x2

]

+
α−1

η4
e

[
a12x+a10(β

2
0 x+2β0β1x2 +β2

1 x3)−2a11(β0x+β1x2)
]
,

iηeηe =− 1

η2
e

+
1

η4
e

[3a02 +(α−1)a22−2(β0 +β1x)(3a01+(α−1)a21)]

+
1

η4
e

(3+(α−1)a20)(β
2
0 +2β0β1x+β2

1 x2)−2
α−1

η3
e

(a11 −a10(β0 +β1x))

+
α−1

η5
e

[
a13 −3a12(β0 +β1x)+3a11(β

2
0 +2β0β1x+β2

1 x2)
]

− α−1

η5
e

a10(β
3
0 +β

3
1 x3 +3β0β1x2 +3β2

0β1x),
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iαβ0
= a10/ηe, iαβ1

= a10x/ηe, iαηe = [a11 −a10(β0 +β1x)]/η2
e and iαα = 1/α2.

The above expressions can be computed numerically.

10.3. Observed information matrix for the nonlinear PNR model

The elements of the observed information matrix for the nonlinear PNR model are given

by

jβkβ j
=

1

η2

n

∑
i=1

[(yi − f (β ,xi))wi +w2
i +α−1]

∂ f (β ,xi)

∂βk

∂ f (β ,xi)

∂βk

+

1

η2

n

∑
i=1

[−(yi − f (β ,xi))+η(α−1)wi]
∂ 2 f (β ,xi)

∂βk∂β j

,

jηβ j
=
α−1

η2

n

∑
i=1

{
−wi +

(yi − f (β ,xi))

η
[(yi − f (β ,xi))wi +w2

i ]
∂ f (β ,xi)

∂β j

}
+

2

η3

n

∑
i=1

(yi − f (β ,xi))
∂ f (β ,xi)

∂β j

,

jαβ j
=

1

η

n

∑
i=1

wi

∂ f (β ,xi)

∂β j

, jαη =
1

η

n

∑
i=1

(
yi − f (β ,xi)

η

)
wi, jαα = n/α2,

jηη =− n

η2
+

3

η2

n

∑
i=1

(
yi − f (β ,xi)

η

)2

− 2(α−1)

η2

n

∑
i=1

(
yi − f (β ,xi)

η

)
wi

+
α−1

η2

n

∑
i=1

(
yi − f (β ,xi)

η

)3

wi +
α−1

η2

n

∑
i=1

(
yi − f (β ,xi)

η

)2

w2
i .

10.4. Hessian matrix for the nonlinear PNR model with correlated errors

For the case of the nonlinear model with correlated errors, we have the following

elements for the Hessian matrix:

∂ 2ℓ(θ )

∂ρ2
=

1

η2

n

∑
i=1

[−1+(α−1)Qi]ε
2
i−1,
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∂ 2ℓ(θ )

∂ βT ∂ρ
=

n

∑
i=1

[
[1− (α−1)Qi]

εi−1

η2
DT

i −
[

ai

η2
− 1

η
wi

]
∂ f (β ,xi−1)

∂ βT

]
,

∂ 2ℓ(θ )

∂η2∂ρ
=

n

∑
i=1

[
− ai

η4
+
α−1

2η2

[
aiQi

η2
+

wi

η

]]
εi−1,

∂ 2ℓ(θ )

∂α∂ρ
=− 1

η

n

∑
i=1

wiεi−1,

∂ 2ℓ(θ )

∂ β ∂ βT
=

n

∑
i=1

[
1

η2
[−1+(α−1)Qi]DiD

T
i −

ai

η2
Gi +

α−1

η
wiGi

]
,

∂ 2ℓ(θ )

∂η2∂ β
=

n

∑
i=1

[
ai

η4
Di −

α−1

2η2

[
ai

η2
QiDi +

1

η
wiDi

]]
,

∂ 2ℓ(θ )

∂α∂ β
=

1

η

n

∑
i=1

wiDi,
∂ 2ℓ(θ )

∂α∂η2
=− 1

2η3

n

∑
i=1

aiwi,
∂ 2ℓ(θ )

∂α2
=− n

α2
.
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Gómez, H. W., Venegas, O. and Bolfarine, H. (2007). Skew-symmetric distributions generated by the

distribution function of the normal distribution. Environmetrics, 18, 395–407.

Gupta, A. K. and Nadarajah, S. (2004). On the moments of the beta normal distribution. Communications

in Statistics-Theory and Methods, 33, 1–13.

Gupta, D. and Gupta, R. C. (2008). Analyzing skewed data by power normal model. Test, 17, 197–210.

Hutson, A. D. (2004). Utilizing the flexibility of the epsilon-skew-normal distribution for common regres-

sion problems. Journal of Applied Statistics, 31, 673–683.

Lange, K. L., Little, J. A. and Taylor, M. G. J. (1989). Robust statistical modeling using the t distribution.

Journal of the American Statistical Association, 84, 881–896.

Lehmann, E. L. (1953). The power of rank tests. Annals of Mathematical Statistics, 24, 23–43.

Leiva, V., Riquelme, M., Balakrishnan, N. and Sanhueza, A. (2008). Lifetime analysis based on the

generalized Birnbaum-Saunders distribution. Computational Statistics and Data Analysis, 52, 2079–

2097.

Mudholkar, G. S. and Hutson, A. D. (2000). The epsilon-skew-normal distribution for analyzing near-

normal data. Journal of Statistical Planning and Inference, 83, 291–309.

Pewsey, A. (2000). Problems of inference for Azzalini’s skew-normal distribution. Journal of Applied

Statistics, 27, 859–870.
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