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Abstract

Social polices are designed using information collected in surveys; such as the Catalan Time

Use survey. Accurate comparisons of time use data among population groups are commonly

analysed using statistical methods. The total daily time expended on different activities by a

single person is equal to 24 hours. Because this type of data are compositional, its sample space

has particular properties that statistical methods should respect. The critical points required to

interpret differences between groups are provided and described in terms of log-ratio methods.

These techniques facilitate the interpretation of the relative differences detected in multivariate

and univariate analysis.
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1. Introduction

Statistical offices around the world (e.g., Eurostat) state that “a time use survey measures

the amount of time people spend doing various activities, such as paid work, household

and family care, personal care, voluntary work, social life, travel, and leisure activities”.

This type of survey offers exhaustive information concerning the social habits and the

everyday life of the population. The time use data are compiled by factors such as,

among others, sex, age group, household composition, level of education, professional

status, and day of the week. In consequence, the analysis of time use data across the

groups defined by these factors is of crucial importance because it supports the de-
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velopment of family and gender equality policies. When one has a preliminary look at

time use data, one states that they are closed data (Aitchison, 1986). That is, the total

daily time expended on different activities by anyone one person is always equal to 24

hours. In addition, the units (hours or minutes) are not relevant when one describes the

time spent on one activity. The interest then, is on the proportion of time, that is, the

part of the day that people do an activity. According to Aitchison (1986), time use data

is one example of compositional data.

Compositional data (CoDa) are quantitative descriptions of the parts or components

of a whole, conveying exclusively relative information. Typical examples of composi-

tions appear in geochemistry, environmetrics, chemometrics, budget expenses and data

from time use surveys. In this latter case, the compositions are closed. On the other hand,

if one were to analyse the solid waste composition in a household the CoDa would not be

closed because the kilograms of waste vary between the families. In such cases, for con-

venience, compositions are commonly expressed in terms of proportions, percentages or

parts per million (ppm) and to do this the closure operation is applied (Aitchison, 1986).

When an analyst decides to analyse a data set X (n × D) using compositional

methods, he or she is assuming that the information collected is relative rather than

absolute. In this sense, it holds that the information collected in any observation x is the

same as in αx, for any scalar α > 0, property known as scale invariance (Aitchison,

1986). However, in some cases the closure operation may be useful when the analyst is

interested in the interpretation of some univariate statistics, such as percentiles. As the

ratios rather than the absolute values are of interest, any function used to measure the

difference between two compositions should be expressed in terms of ratios between

variables. Indeed, let x1 and x2 be two compositions, the vector of ratios ( x11
x21

, . . . , x1D
x2D

)

should play an important role when one interprets the difference between x1 and x2

(Aitchison and Ng, 2005). These ideas for dealing with CoDa were introduced in the

early 1980s, when the use of logratios was proposed by Aitchison (1986). At the

beginning of the current century, the use of orthonormal log-ratio coordinates was

introduced in Egozcue et al. (2003). The critical concept of these approaches is that

compositions have a natural geometry, known as the Aitchison geometry (Egozcue and

Pawlowsky-Glahn, 2006), which is coherent with the relative scale of compositions.

Our interest is to compare the use of time between groups of people defined by

factors such as professional status, level of education or municipality size. When one

compares groups of data, descriptive techniques, models and the corresponding infer-

ential techniques are commonly used. All of these elements have to be appropriate for

the type of data collected. For example, some models consider that random multivariate

observations X from a group are generated by adding a random variation or noise ε

around a fixed centre µ. Although the typical model X = µ+ε can be appropriate for

interval scale data, this model would not be useful for ratio scale data such as CoDa.

For example, in the case of data from a time use survey, when the centre µ takes a small

value for some activity, the resulting composition x may take negative values. More-

over, most common parametric and non-parametric methods for analysing differences
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between groups deal with variability matrices: total, between and within. The critical

idea is how to compare the variability inside the groups with the variability between the

groups. For interval scale data these variabilities are measured using the typical sum of

squares matrices. However, for CoDa these elements should be appropriately defined in

terms of ratios (Aitchison, 1986). Multivariate analysis of variance (MANOVA) is the

conventional name for the contrast of the equality of means in several groups (Wilks,

1932; Smith et al., 1962). MANOVA and its related parametric methods include infer-

ential techniques based on the multivariate normal distribution. The approach known

as the principle of working on log-ratio coordinates (Mateu-Figueras et al., 2011) sug-

gested the definition of the normal distribution for CoDa (Mateu-Figueras et al., 2013).

With these elements at hand, the MANOVA contrast can be coherently defined to the

particular geometry of CoDa.

The main objective of this article is to provide the critical points required to inter-

pret differences between groups for CoDa. In Section 2, some descriptive statistics and

techniques for CoDa are presented. Section 3 provides the complete proposal of a com-

positional MANOVA contrast. The interpretation of multiple comparisons and related

techniques are also described. The example that motivated this article is presented in

Section 4, where all the elements introduced for interpreting differences are applied. Fi-

nally, in Section 5, some concluding remarks are provided. The programming of the data

analyses discussed in this article was carried out using the open source R statistical pro-

gramming language and software (R development core team, 2014) and the freeware Co-

DaPack (Comas-Cufı́ and Thió-Henestrosa, 2011). The computer routines implementing

the methods can be obtained from the website http://www.compositionaldata.com and

the R-package “zCompositions” (Palarea-Albaladejo and Martı́n-Fernández, 2014).

2. Compositional descriptive techniques

2.1. Logratio coordinates

According to the ratio scale nature of CoDa, any function f (·) applied to a composition

x must verify that f (x) = f (αx), for any α> 0. In particular,

f (x) = f (x1,x2, . . . ,xD) = f

(

xk

(

x1

xk

, . . . ,
x(k−1)

xk

,1,
x(k+1)

xk

, . . . ,
xD

xk

))

=

= f

(

x1

xk

, . . . ,
x(k−1)

xk

,
x(k+1)

xk

, . . . ,
xD

xk

)

, for k = 1, . . . ,D.

In other words, any function should be expressed in terms of ratios between variables.

Note that any ratio x j/xk is not symmetric and takes values in (0,+∞). However, a

logratio ln(x j/xk) takes values in the full real space and is symmetric with respect to
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the zero origin. Following Aitchison (1986), the general expression of a logratio is a

log-contrast

a1 ln(x1)+ . . .+aD ln(xD) = ln

(

D

∏
j=1

x
a j

j

)

, (1)

where ∑a j = 0, so as to verify the scale invariance property. A log-contrast is, in essence,

a logratio of parts because for a j > 0 the corresponding part x j appears in the numerator,

but if a j < 0 it appears in the denominator, and for those parts that do no contribute to

the logratio, then a j = 0 holds. Importantly, log-contrast (1) has the same role as linear

combinations of variables in classic statistics. Note that ratios and logratios can not be

calculated when one of the parts takes the value zero. The treatment of this difficulty,

also known as the zero problem, has recently been described in numerous articles. A

reader interested in this topic will find a general description in Palarea-Albaladejo et al.

(2014).

Using a log-contrast one can define new variables (e.g., latent variables or principal

components) where the information collected in the original variables is combined.

One example of the very useful new variables is the centred log-ratio (clr) defined in

Aitchison (1986) by clr(x)k = ln
xk

(∏x j)
1/D = lnxk− lnx, k = 1, . . . ,D. The log-contrast

expression (1) of a clr-variable verifies that ak j = −1/D for j 6= k and akk = 1− 1/D.

The clr variables, also known as clr coordinates, have another interesting interpretation:

they are the log-coordinates centred by rows. Therefore, it holds that ∑
D
k=1 clr(x)k = 0,

indicating that the dimension of the clr coordinates’ space is D−1. The critical element

of the Aitchison geometry is the scalar product defined via the log-ratio coordinates.

Indeed, let x1 and x2 be two compositions, then < x1,x2 >a=< clr(x1),clr(x2)>e. Here

the subscripts a and e represents respectively Aitchison and Euclidean metric elements.

As usual, one can derive a distance and norm from the scalar product and finally obtain

da(x1,x2) = de(clr(x1),clr(x2)), and ||x1||a = ||clr(x1)||e. Remarkably, the Aitchison

distance verifies that da(x1,x2) = ||( x11
x21

, . . . , x1D
x2D

)||a, providing information about the

relative difference between two compositions.

These metric elements are used to construct orthonormal basis and calculate the

corresponding orthonormal log-ratio coordinates (Egozcue et al., 2003). The expression

of these coordinates, known as isometric log-ratio coordinates (ilr), depends on the

basis selected. Following Egozcue and Pawlowsky-Glahn (2005) one can define a

particular ilr coordinates created through a sequential binary partition (SPB). According

to equation (1), to make any logratio consists of selecting which parts contribute to the

logratio and decide if these will appear in the numerator or in the denominator. In the

first step of an SBP, when the first ilr coordinate is created, the complete composition

x = (x1, . . . ,xD) is split into two groups of parts: one for the numerator and the other

for the denominator. In the following steps, to create the following ilr coordinates, each

group is in turn split into two groups. That is, in step k when the ilr(x)k coordinate
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is created, the r parts (xn1, . . . ,xnr) in the first group are coded as +1 and placed in

the numerator, and the s parts (xd1, . . . ,xds) in the second group will appear in the

denominator and coded as -1. As a result, the ilr(x)k is

ilr(x)k =

√

rk sk

rk + sk

ln
(xn1 · · ·xnr)

1/rk

(xd1 · · ·xds)1/sk
, k = 1, . . . ,D−1. (2)

where
√

rk sk
rk+sk

is the factor for normalizing the coordinate. The log-contrast expression

(1) of a ilr-variable verifies that ak j =
√

sk
rk (rk+sk)

if the part x j is placed in the numerator,

and ak j =−
√

rk
sk (rk+sk)

for parts that appear in the denominator.

The metric elements can be also expressed in terms of ilr coordinates (e.g., da(x1,x2)=

de(ilr(x1), ilr(x2))) as these coordinates are equal to the clr coordinates expressed on an

orthonormal basis (Egozcue et al., 2003). The most important point here is that, once an

orthonormal basis has been chosen, all standard statistical methods can be applied to the

log-ratio coordinates and transferred to the simplex preserving their properties (Mateu-

Figueras et al., 2011). The log-ratio approach proposed by Aitchison (1986) and the

proposal to work on log-ratio coordinates do not differ substantially. In fact, the only

distinction is the recommended use of orthonormal (or ilr) coordinates in the latter ap-

proach instead of the use of clr transformed vectors (see Mateu-Figueras et al. (2011) for

an in-depth discussion). Note that, when a statistical method is applied to the ilr coordi-

nates, one must analyse whether the results depend on the particular orthonormal basis

selected. In other words, one must assure oneself that the interpretations are invariant un-

der changes of basis. In this scenario, the advantage of the ilr coordinates created by an

SBP is the interpretation of results and the corresponding CoDa-dendrogram, described

in the following section.

2.2. Descriptive statistics and plots

Most of the multivariate methods for dealing with groups are based on location and

spread (shape) descriptive statistics. In this paper we focus on the common centre and

variability elements, accordingly modified to take into account the Aitchison geometry.

Let X be a random composition. In practical terms, Pawlowsky-Glahn and Egozcue

(2001) stated that the centre µ is the geometric mean of X, whose ilr coordinates

ilr(µ) are, respectively, equal to the arithmetic mean of ilr(X). The covariance of X

is cova [X] = Σ = cov[ilr(X)]. In consequence, a comparison of g groups with respect

to its location will be based on the comparison between the corresponding g centres

µ j, j = 1, . . . ,g. Indeed, for a data set with n compositions distributed in g groups, we

can use the matrices total (T), between-groups (B), and within-groups sums of squares

matrices (W). These matrices verify the variability decomposition property: T=B+W.

An important contribution of matrix B in this equality suggests that there are relevant
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differences between the groups with respect to its location. The approach used for

evaluating this importance means techniques differ from one another. In this article we

focus on the MANOVA contrast that evaluates this contribution using measures based

on the trace, determinant and eigenvalues of these matrices. To compare the spread of

the groups, for example to evaluate the homoscedasticity, one will compare the within-

groups sum of squares matrices. Besides the location case, there are few techniques for

evaluating differences with respect to the variability.

For example, we considered that a first group is the data set statistician’s time

budget (Aitchison, 1986) formed by 20 compositions with six parts (T,C,A,R,O,S),
corresponding to time spent on daily activities: Teaching, Consulting, Administration,

Research, Other, and Sleep. Next, we generated a second group perturbing the 20

samples multiplying them component-wise by the vector (1.2,1,1,1,1,1), that is,

increasing by 20% the first activity ratio against the other activities. Finally, we created

a third group perturbing the initial 20 samples by the vector (1,1,1,1.3,1,1) to increase

by 30% the fourth component ratio against the other components. Hereinafter, we refer

to the whole CoDa set as the ST3 data set. Note that the three groups have the same

covariance matrix because the second and third groups were created by perturbing the

first group (Aitchison, 1986). Table 1 shows the unitary representative of the centre

(µ) of the whole ST3 data set and the centres (µ j, j = 1,2,3) of the three groups. As

expected, the larger differences occur in parts T and R.

Table 1: Centres in ST3: for the whole data set (µ) and for the three groups (µ j).

Centre T C A R O S

µ 3.69 2.47 2.93 2.90 5.45 6.56

µ1 3.54 2.52 2.98 2.71 5.56 6.69

µ2 4.13 2.44 2.90 2.63 5.40 6.50

µ3 3.42 2.43 2.89 3.41 5.38 6.47

The geometric mean barplot (Figure 1) is an option for describing differences

between groups. Given a CoDa set, for each group, the logratio between the whole

geometric mean and the geometric mean of the group is calculated. Finally, each

component is represented in a barplot using a logarithmic scale. If the centre of the group

is equal to the whole centre, the ratio of each component is one and the corresponding

logarithm is zero. If one part of the centre of the group is greater or smaller than the

corresponding part of the whole centre, then the ratio is different than one and the

corresponding logarithm is respectively positive or negative. Indeed, large bars (positive

or negative) will indicate large differences in the means. Figure 1 shows that in the

parts C, A, O, and S, the differences between the groups and the whole data set are not

relevant. The samples from the second group have large values in part T , whereas they

take small values in the rest of the parts. A similar situation occurs in the third group
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Figure 1: Geometric mean barplot for ST3 data set: first group (black), second group (dark gray), third

group (light gray).

with respect to part R. Note that, for example, when a bar in one part is larger than 0.15,

one can interpret that, on average, the samples of this group are in this part 16.18%

(exp(0.15) = 1.1618) larger than the whole centre.

To complete the basic description of a grouped CoDa set, one can represent the data

using three specific plots: a biplot, a canonical variates plot and a coda-dendrogram.

Aitchison and Greenacre (2002) adapted the typical biplot for CoDa and in doing so

introduced the clr-biplot, that is, the biplot of clr coordinates. In other words, a clr-biplot

draws on the same plot a projection of scores in the first two clr principal components

together with the centred clr variables. Daunis-i-Estadella et al. (2011) described the

interpretation of clr-biplots and introduced an extension for including supplementary

elements. However, the statistical technique that underlies a biplot is not specially

designed for highlighting differences between groups. In some cases, despite the groups

being different, they appear mixed in the biplot. Figure 2(up) shows the clr-biplot of

the ST3 data set. This representation is of a medium quality because the two first axes

retain 61% of the variability. The samples of the first group are represented by circles.

The compositions of the second group are shown by the triangles and shifted slightly

to the positive part of the clr variable associated to the part T . On the other hand, as

expected, the squares representing the third group are shifted to the positive direction

of the clr-transformed part R. However, the samples from the different groups appear

mixed, suggesting that there are no relevant differences between the groups.

As an alternative to the biplot, one can consider the canonical variates plot. Broadly

speaking, a canonical variate is a new variable obtained as a linear combination of the

original variables, where the linear combination attemps to highlight any differences

between the g groups. For CoDa, we will use log-contrasts to create these new vari-

ables. Indeed, using ilr coordinates, a canonical variate y is equal to y = v
T ilr(x) =

∑
D−1
j=k vk ilr(x)k, that is, y is also a log-contrast. According to the general procedure, the

first canonical variate y1 is defined by the vector v1 which maximizes the F statistic
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Figure 2: Compositional plots for ST3 data set: clr-biplot (up) and canonical variates plot of ilr coordi-

nates (down). Samples of the three groups are respectively represented by circles, triangles and squares.

associated with the ANOVA test: H0 : v
T
1 µ1 = . . . = v

T
1 µg It could be proved that the

vector v1 is the eigenvector of matrix W
−1

B associated to its maximum eigenvalue.

Following this procedure iteratively, we can obtain the ordered D − 1 eigenvectors

that define the corresponding canonical variates. Importantly, if a change of basis is

applied and the new ilr coordinates are A ilr(x), with A an unitary matrix (AT
A =

I), then taking Av, the same canonical covariate is obtained. In other words, the

invariance under change of basis is guaranteed. Figure 2(down) shows the two first

canonical variates plot for the ST3 data set. In addition, the centres of each group are

represented by a filled symbol. The samples from different groups appear well separated,

suggesting that there are relevant differences between the groups. In this case, the first

eigenvector of matrix W
−1

B is v1 = (3.75,−0.37,10.31,3.57,0.31)T which, combined

with the coefficients of log-contrast in equation (2), produces the first canonical variate
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log-contrast with coefficients a = (6.33,1.03,4.13,−8.08,−3.13,−0.28)T. To perturb

only the first part of the samples of the first group by 1.2 is equivalent to adding

6.33 ln(1.2) = 1.15 to the first canonical variate. The perturbation of the fourth part

by 1.3 is equivalent to adding −8.08 ln(1.3) =−2.12 to the scores in the first canonical

variate.

A CoDa-dendrogram is a descriptive plot for visualizing some univariate statistics

of particular ilr coordinates created through a SPB (Pawlowsky-Glahn and Egozcue,

2011). Table 2 shows the complete SBP for the ST3 data set.

Table 2: Sequential Binary Partition for ST3 CoDa set.

ilr(x)k T C A R O S

ilr(x)1 1 1 1 1 −1 −1

ilr(x)2 1 −1 −1 1 0 0

ilr(x)3 1 0 0 −1 0 0

ilr(x)4 0 −1 1 0 0 0

ilr(x)5 0 0 0 0 1 −1

The SBP is represented by the dendrogram-type links between parts (Figure 3).

The variability of each ilr coordinate is represented by the length of the vertical bars.

Therefore, a short vertical bar, as in the case of ilr(x)3 and ilr(x)4 means that the ilr

coordinate has a small variance. Conversely, when the ilr coordinate has a large variance

its vertical bar is longer, as in ilr(x)2 which involves the parts T and R. The location

of the mean of an ilr coordinate is determined by the intersection of the horizontal

segment with the vertical segment (variance). When these intersections are not in the

middle, this indicates a major contribution of one of the groups of parts. This is the

case of ilr(x)1, where the intersection is close to parts O and S, according to its larger

values (Table 1) with respect to the values in the other parts. In addition, the box-plot

of the ilr coordinates is provided. Note that for the coordinate ilr(x)3, the box-plots

are ordered according to the perturbation applied to create the corresponding group.

One can analyse its symmetry and compare the median with the mean to interpret the

symmetry of the corresponding univariate distribution. Figure 3 shows these statistics of

the ilr coordinates for the three groups in ST3 data set. Note that there are no differences

between the variances between the groups but there are differences between the means in

the coordinates ilr(x)1, ilr(x)2, and ilr(x)3. For the coordinate ilr(x)3 there is a difference

between the mean of first group (black colour) and the mean of second group (dark

gray colour) and third group (light gray colour). This fact is consistent because ilr(x)3

evaluates the ratio between the parts T and R. The second group mean is close to part T

and the mean of third group is close to R. This interpretation agrees with the construction

of these groups by perturbing the first group.
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Figure 3: CoDa-dendrogram for ST3 data set using the SBP from Table 2. Elements of three groups 1, 2,

and 3 are distinguish by the colours black, dark gray and light gray, respectively.

3. Inferential techniques to compare CoDa groups

3.1. MANOVA contrast for CoDa

In the statistical literature there are many inferential methods for comparing groups of

data in the real space. Following Aitchison and Ng (2005), in this article we focus on

the most basic methods to show how to proceed when one wants to be coherent with the

Aitchison geometry. Other more sophisticated methods could be adapted accordingly to

the compositional geometry by using an analogous procedure.

Let Xk be a random composition corresponding to the group k for k = 1, . . . ,g.

The more basic model assumes that Xk is generated adding a random variability εk

around a centre µk in a multiplicative part-wise way: Xk = µk ⊙ εk. In this case, the

expected value of variability εk is the unit vector 1. Following Egozcue et al. (2003) and

according to the principle of working on coordinates (Mateu-Figueras et al., 2011), this

model is equivalent to ilr(Xk) = ilr(µk)+ ilr(εk), where ilr(εk) is centred at the origin of

coordinates (0). In other words, working on coordinates, one can assume the same model
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as for interval scale data in the real space. From the different approaches for dealing

with this type of model, in this article we focus on the MANOVA contrast (Wilks, 1932;

Smith et al., 1962) and related techniques. The technical details of these methods are

provided by the majority of books devoted to multivariate statistical techniques (e.g.,

Seber, 1984).

The critical assumption of the MANOVA contrast is that the ilr random variability

ilr(εk) is homocedastic and normally distributed, that is, ilr(εk)∼N (0,Σ);k = 1, . . . ,g.

Following Mateu-Figueras et al. (2013), this assumption is equivalent to assuming log-

ratio normality and homocedasticity for the compositional term εk. In addition, the orig-

inal null hypothesis H0 : µ1 = . . .= µg is equivalent to the null hypothesis H0 : ilr(µ1) =

. . .= ilr(µg). Therefore, the statistics of contrast will be based on the sum of square ma-

trices T, B, and W calculated on ilr coordinates. The most common contrast statistics

are: Wilks’ Λ (det(W)/det(T)), Pillai’s trace (trace(BT
−1))), Lawley-Hotelling trace

(trace(W−1
B)), and Roy’s largest root of matrix W

−1
B. Nowadays, the discussion over

the merits of each statistic continues and the common software routines allow the four

statistics to be calculated. In the case of two groups, the four statistics are equivalent and

the MANOVA contrast reduces to Hotelling’s T-square test. Importantly, the MANOVA

contrast is invariant under a change of log-ratio basis because the four statistics are in-

variant functions of the eigenvalues of matrix W
−1

B. This fact facilitates the use of the

contrast because one can work with the ilr coordinates obtained from an SBP.

When the assumptions are accomplished the four statistics are associated to a

value in an F probability distribution, permitting the calculation of a p-value for the

MANOVA contrast. The first assumption, the homogeneity of variances and covariances

(H0 :Σ1 = . . .=Σg), can be tested using the Box M test (Seber, 1984, p. 449). This test

has been severely criticized because it is very sensitive to lack of normality, so that a

significant value could indicate either unequal covariance matrices or non-normality

or both. The general recommendation is to take a significant level less than 0.005.

Nevertheless, if the number of subjects in each of the groups are approximately equal,

the robustness of the MANOVA test is guaranteed and the impact, if the assumption

of equal covariances is violated, is minimal (Johnson and Wichern, 2007). Noticeably,

because Box M statistic is a function of the covariance matrices determinant, it could

be proved that the results of the Box M test are invariant under changes of basis.

Moreover, the equality of covariances can be descriptively checked using the CoDa-

dendrogram. Because the vertical lines in the plot (Figure 3) represent the variance of

each ilr coordinate, then we can evaluate if there are differences in the variances of each

group. Figure 3 suggests that the variances of each ilr coordinate are equal because the

three lines are of similar length. However, a CoDa-dendrogram only allows the variances

of ilr coordinates to be compared, that is the diagonal of matrices Σk. Despite being

unusual, it could be that the random compositions Xk have equal variances but different

covariances. That is, the matrices Σk have equal diagonals but the rest of elements are

different. To investigate this case we propose to previously sphericize the data to plot

the CoDa-dendrogram. A spherification, similar to the standardization in the univariate
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case, consists of multiplying the residuals ilr(εk) of each group by the squared root of

W
−1, the inverse of covariance matrix. After this transformation, if the homocedasticity

is verified, the resulting covariances matrices in each group should be the identity matrix.

In consequence, in the CoDa-dendrogram of spherized data, the vertical lines of all the

groups for all the ilr coordinates should be equal.

The second assumption for the MANOVA contrast is the normality of the residuals

εk. One can apply to the their ilr coordinates any of the multivariate normality tests

that exist in the literature. For example, we can use the goodness-of-fit test suggested in

Aitchison (1986) for compositional data. This test is based on the idea that, under the

assumption of normality, the radii (or squared Mahalanobis distances) of the residuals

are approximately distributed as a chi-squared distribution. We can use some empirical

distribution function statistics, for instance Anderson-Darling or Cramer-von Mises,

to test significant departures from the chi-squared distribution. Importantly, because

Mahalanobis distances are invariant under change of basis, this normality test can be

calculated using any ilr coordinates obtained with an SBP. To complete the analysis

of this assumption, the normality can be explored using a typical Q-Q plot of the

radii against the theoretical quantiles of a chi-squared distribution. Finally, according

to Johnson and Wichern (2007), the assumption of normality in a MANOVA contrast

can be relaxed when the sample sizes are large due to the multivariate version of the

central limit theorem.

3.2. Analysing differences between groups

When MANOVA contrast or another test suggest rejecting the null hypothesis of

equality of means, two questions immediately arise: (a) Which groups differ from

the rest and (b) which variables are responsible of these differences? One common

way to investigate the answer of these questions is by making the corresponding

g(g− 1)/2 comparisons between pairs of groups. Following the MANOVA approach,

these comparisons can be analysed through the Hotelling’s T -squared test, which is

the multivariate generalization of a typical t-test. In this procedure, there is a general

recommendation to avoid an artificial increase of the Type I Error rate: to adjust the

alpha level of each test by making some kind of correction. Although there is no general

agreement about the way to make this correction, a common technique is the Bonferroni

correction for simultaneous tests (Seber, 1984). Following this technique one should

modify the critical level α to α/(g(g− 1)/2). However, this procedure tends to be

conservative, especially when the number of comparisons is large. There are other more

sophisticated procedures, such as the Scheffe’s, the Tukey’s or the Student-Newman-

Keuls tests or another different approach provided by the FDR False Discovery Rate

controlling method (Benjamini and Hochberg, 1995; Benjamini, 2010). The techniques

for dealing with multiple comparisons are currently an open field whose development is

beyond the scope of this article.
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Regardless of this analysis, note that when using Hotteling’s T -squared test on

ilr coordinates the invariance under change of basis is guaranteed. In addition, these

differences can be explored using the canonical variates plot, where one may also draw

the corresponding confidence region for the mean and the predictive region for each

group. With this plot one has a complete picture of the differences between groups,

analysing if the corresponding regions overlap or not.

Once differences between two particular groups are detected, interest focuses on

discovering if there are ilr coordinates responsible for these differences. That is, if

the differences stated using multivariate techniques may be attributed to any separate

variable. Following the previous approach, these univariate comparisons will be done

through D − 1 simultaneous t-tests. Again, in this case it is accordingly necessary

to adjust the critical level or use a more complex technique. Remarkably, the results

of these comparisons strongly depend on the ilr coordinates selected because one is

making univariate t-test for a particular orthonormal basis. As a consequence, the

choice of an interpretable SBP turns out to be crucial. For this analysis, the geometric

mean barplot may be very useful for completing the interpretation of the univariate

log-ratio differences because this plot allows all the parts to be compared directly. In

addition, following Hesterberg et al. (2012), one can add the uncertainty associated to

the geometric mean barplot using a bootstrap technique for comparing two populations.

Let X1 and X2 be two groups with n1 and n2 compositions, respectively:

1. Draw a resample of size n1 with a replacement from the first group and a separate

resample of size n2 from the second group. Compute the centre of each group and

calculate its log-ratio part-wise vector.

2. Repeat this resampling process B times (common B is 1000).

3. Construct the bootstrap confidence interval for each part of the log-ratio vector.

Note that the critical level of confidence intervals should be appropriately corrected.

There are four common types of bootstrap confidence intervals: t, percentile, bias-

corrected, and tilting. The description of their properties is provided by Hesterberg et

al. (2012). For example, to calculate the α% bootstrap percentile confidence interval,

one should calculate the interval between the α/2th and (1−α/2)th percentiles of the

bootstrap distribution of the corresponding part in the log-ratio vector. Regardless of

which type of interval is calculated, if the interval for a part includes the value zero, it

indicates that there is no difference between these groups with respect to this part. Only

the parts with positive or negative intervals may be considered as responsible for the

difference between the groups.

For the ST3 CoDa set we obtained p-values below 0.001 for the four statistics in

the MANOVA contrast, indicating to us to reject the null hypothesis of equality of

means. The radii normality tests based on the Anderson-Darling, on the Cramer von-

Mises, and on the Watson statistic show p-values above 0.15, suggesting that the normal
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Figure 4: Bootstrap percentile confidence intervals for log-ratio difference between centres of second and

third group in CoDa set ST3. Filled circles are the log-ratio difference for the centres in ST3. Vertical dashed

lines are the percentile intervals.

probability distribution fits the data well. In this case, the Box M test is not necessary

because by construction the three groups have the same covariance matrix. Figure

2(down) suggests that there are differences between the three groups, later confirmed by

the three Hotelling T -squared simultaneous tests (p-value< 0.05/((3×2)/2)= 0.0167,

Bonferroni correction). According to the construction of groups, the SBP in Table 2

suggests that the groups are equal in ilr(x)4 and ilr(x)5. They could only have relevant

differences in the three first ilr coordinates. When the univariate ilr coordinates are

analysed through simultaneous t-test, only ilr(x)3 confirms the differences between the

three groups because the larger p-value, obtained when comparing 1 and 2, was lower

than the corrected alpha level (p-value = 0.0034 < 0.0167/4 = 0.0042, Bonferroni

correction). These differences are associated to large values in activities T or R, or both.

For example, we detected that the difference is on both parts when groups 2 and 3 were

compared using the bootstrap percentile confidence intervals (B= 1000). Figure 4 shows

these intervals for the corresponding corrected critical value. The filled circles represent

the difference between the centres in the CoDa set ST3. The dashed vertical lines are

the bootstrap percentile confidence intervals, whose extremes are the corresponding

percentiles. Only the T and R intervals do not have the value zero (horizontal line),

indicating that the univariate differences are confirmed.

4. Example

We used a data set kindly provided by the Statistical Institute of Catalonia (Idescat) in

Catalonia, Spain. It consists of information collected using a face to face survey of 6471

persons aged 10 and over. Household participants were randomly selected according to
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a double stratified sampling design to guarantee that the selected sample is a reflection

of the general population. The survey provides information on the main activity the

individual does during each of the 144 10-minute slots, which make up a day. On a

primary level, the survey considers a list of 34 different possible activities. However,

to better interpret the results, Idescat’s official reports aggregate these activities into

a minimum set of 5 main activities: personal care and sleep (CS), paid work and

study (WS), household and family care (HF), social activities (SA), and commuting

and others (CO). Moreover, the survey collected additional information related to

many other aspects such as geographical area, municipality size, day of the week,

household composition, sex, age, nationality or professional status. In consequence, any

appropriate statistical analysis of the whole data set requires more general and complex

methods. Because this type of analysis is beyond the scope of this article, we focused

on a simple comparison between groups of data. In particular, to illustrate the CoDa

techniques we attempted to solve the question: As regards to municipality size, are there

any differences between time use composition of working people in a usual working

day? Despite the fact that there are many other similar questions that might be analysed,

this one is the most interesting to design regional polices. Note that, any other similar

question may be analysed using an analogous procedure.

A preliminary inspection of data shows that the participant #1606 has a zero in

the activity personal care and sleep. This participant is considered as an anomalous

composition and it is removed accordingly from the data set. To obtain more realistic

results we also removed those participants who’s sampled day was an unusual day.

That is, 668 participants who, for some unforeseen reason (illness, accident, or public

holiday), did not carry out their usual activities and so were not included in the

analysis. According to Idescat’s reports, we considered that working days were from

Monday to Thursday and working people, the participants that self-declared being in

paid employment or studying. After the aforementioned steps, the sample size of the

data set included in the analysis was reduced to 1051 participants. Only 253 from

these compositions contain at least one zero, which represents an overall 5.2% of

the values in the data set. The parts CS and WS have no zeros. The parts HF, SA

and CO have respectively 18.55%, 4.28%, and 3.14% of their values equal to zero.

According to the nature of these three parts, these zeros are considered as censored

values consequence of the sampling design. Because of the data correspond to the main

activity during a 10-minute slot, we assumed a threshold equal to 10 minutes for the

censored values. These values were imputed using the log-ratio robust method based

on a modified Expectation-Maximization algorithm (Palarea-Albaladejo et al., 2014;

Palarea-Albaladejo and Martı́n-Fernández, 2014).

As regards to the size of the municipality, Idescat classified the participants into three

groups: small, medium and large. Table 3 shows the number of inhabitants that define

these sizes and the number of participants of each group. Remarkably, the three groups

have comparable sample sizes.



246 On the interpretation of differences between groups for compositional data

Table 3: Time Use data set: groups defined by municipality size.

Size Group numbering Inhabitants limit Participants

Small 1 <20000 369

Medium 2 [20000,100000] 311

Large 3 >100000 371

Figure 5 shows the ilr canonical variates, where the first one retains 77.93% of the

variability. The participants who live in a small municipality (Group 1) are represented

by circles. The triangles and squares represent participants of Groups 2 and 3, respec-

tively. Participants appear mixed and no evidence of large differences between groups

is detected. We used numbered circles to show the position of the geometric centre of

each group. Apparently, Groups 1 and 2 have similar average values and the centre of

Group 3 appears slightly separated.

Figure 5: Canonical variates plot of ilr coordinates for Time Use data set. Samples of the small (1),

medium (2) and large (3) municipalities are respectively represented by circles, triangles and squares. The

geometric centres of each group are accordingly represented by numbered circles.

Using equation (2) the log-contrast coefficients of the first canonical variate are

a = (−0.50,−0.83,−0.28,0.34,1.27). We can interpret the slight differences between

Group 3 and the other groups in terms of an opposition between the three first parts (CS,

WS, HF) and the parts (SA, CO). The largest weights correspond to WS and CO parts.

This interpretation is coherent with the values shown in Table 4. The largest values

the SA and CO parts are taken from the group from the large municipalities. To the

contrary, Groups 1 and 2 take largest values in WS part. In summary, people from large
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Table 4: Centres of groups in Time Use data set: personal care and sleep (CS), paid work and study (WS),

household and family care (HF), social activities (SA), and commuting and others (CO).

Group CS WS HF SA CO

1 10.97 8.72 1.15 1.89 1.28

2 10.66 8.74 1.19 2.11 1.31

3 10.80 8.50 1.02 2.13 1.55

municipalities expend more time on SA and CO, this time is subtracted to parts WS and

HF.

These differences are illustrated in Figure 6. When compared with the whole geo-

metric centre, the largest differences appear in HF, SA and CO. On the other hand, the

barplot suggests that the values in CS and WS are very similar.

Figure 6: Geometric mean barplot for Time Use data set: Group 1 (black), Group 2 (dark gray), and

Group 3 (light gray).

The MANOVA contrast confirms these differences because all the p-values provided

by the common contrast statistics are lower than 0.05, where the largest p-value was

0.0001969, the value for the Wilks’ Λ. When the groups were compared by pairs,

the behaviour suggested in Figure 5 was confirmed. For Groups 1 and 2, the p-value

was equal to 0.107. On the other hand, for Groups 1 and 3 was 0.000255 and for

Groups 2 and 3, 0.003079, both lower than the Bonferroni correction level 0.05/3 =

0.0166. For these cases, we investigated which log-ratio coordinate was contributing

to these significant differences between groups. The alpha level was provided by the

corresponding Bonferroni correction 0.05/(3× 4) = 0.0042. After applying the t-test

to the four coordinates for the data from Groups 1 and 3, we only obtained significant

differences for the fourth coordinate (p-value = 0.0006). This behaviour was repeated

when the data involved were from Groups 2 and 3 (p-value = 0.0004). According to the

equation (2), the fourth coordinate provides information about the ratio of part CO over
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Figure 7: Time Use data set. Bootstrap percentile confidence intervals for log-ratio difference between

centres of: first and third group (up); second and third group (down). Filled circles are the log-ratio

difference for the corresponding centres. Vertical dashed lines are the percentile intervals.

the geometric mean of the other parts. Following this result, we investigated if the CO

part was responsible of these differences. Figure 7(up) shows the bootstrap percentile

confidence intervals when first and third groups are compared. The alpha level was

provided by the corresponding Bonferroni correction 0.05/(3×5)= 0.0033. The picture

for the comparison between Groups 2 and 3 is shown in Figure 7(down). Both figures

suggest the same behaviour, that is, the only significant difference appears in part CO.

The percentile interval in both cases appears above the reference line. Because the log-

ratio comparison uses the data from the third group in the numerator, this position means

that participants in the third group take greater values than in the other two groups. In

other words, people from large municipalities expend significantly more time on the

Commuting and Others activities.

When the homogeneity of log-ratio variances and covariances was checked using the

Box M test, we obtained a p-value equal to 0.8244. That is, we assumed that covariance

matrices were not significantly different. On the other hand, when we applied the radii

test to check the log-ratio normality of residuals, the p-value was lower than 0.01.
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Figure 8: Time Use data set. Chi-square plot of Manova contrast residuals.

Figure 8 suggests that this lack of normality is caused by samples taking extreme values.

This typical pattern is also evident in the histogram of the residuals shown in Figure 9.

Despite the Gaussian shape of these histograms, the presence of extreme values may

cause the lack of normality. In this case, due to our large sample size, the multivariate

version of the central limit theorem guarantees the robustness of MANOVA results even

the lack of normality. As indicated in Section 3.1, the non-normality could also affect

the Box M test and a lower p-value could be obtained. However, this effect was not

appreciated in our case because a large Box M test p-value was obtained.

Figure 9: Time Use data set. Histograms of Manova contrast residuals.
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5. Final remarks

Because time use data are compositional, any statistical analysis has to take into account

their relative nature. This article fills the gap for basic methods for comparing groups of

CoDa. We introduced descriptive techniques (log-ratio canonical variates and geometric

mean barplots) for an initial exploration into the differences between groups. These

differences can be confirmed by the typical inferential tools (MANOVA contrast). We

introduced the bootstrap log-ratio percentiles to improve the interpretation of univariate

differences and to complete the analysis of the log-ratio coordinates. Because most

of these techniques are based on the principle of working on log-ratio coordinates, a

detailed discussion of its invariance under change of basis was provided. The methods

described assume normality and homocedasticity. When these assumptions are violated,

another family of techniques should be explored, such as robust methods or distance

based methods. These techniques should be applied accordingly to log-ratio coordinates

to assure an appropriate analysis of the relative information collected in CoDa.

The Time Use data set provided by Idescat, is a complex data set that requires more

sophisticated and general methods. However, we realised that no literature deals with

these type of data using recent advances in CoDa analysis. The log-contrast approach

provided in this article will be helpful to develop more complex methods, such as

structural equation modelling. In addition, any general models for time use data have

to include the presence of essential or structural zeros. These types of zeros represent

absolute zeros, that is, it makes no sense to replace them by small values because they are

not a consequence of the sampling design. The analysts should use their prior knowledge

to decide what type of zero is present in a part. For example, survey participants that

do not work or study have an essential zero in this part. On the other hand, in our

example, after an appropriate amalgamation the zeros were considered as a consequence

of sampling design. Because the greater the number of different activities are considered,

the more zeros are collected, the appropriate amalgamation of parts is recommended.

The development of these types of models is one of the more interesting challenges in

current compositional data analysis.
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