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Tibor K. Pogány1 and Saralees Nadarajah2

Abstract

In a recent edition of SORT, Bidram and Nekoukhou proposed a novel class of distributions and

derived its mathematical properties. Several of the mathematical properties are expressed as

single infinite sums or double infinite sums. Here, we show that many of these properties can

be expressed in terms of known special functions, functions for which in-built routines are widely

available.
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1. Introduction

Bidram and Nekoukhou (2013), referred to as BN from now, present a novel class of

distributions referred to as double bounded Kumaraswamy-power series distributions.

They derive various mathematical properties of the distributions, including their den-

sity functions, survival functions, hazard rate functions, quantiles, moment generating

functions, moments, order statistic properties and stress strength parameter. They also

discuss maximum likelihood estimation of the parameters of the distributions and pro-

vide a real data application.

Several of the expressions given in BN involve single infinite sums or double infinite

sums. This is the case with the moment generating functions given in BN, Table 2; the

moments given in BN, Table 2; the density of the ith order statistic given in BN, page

221; the rth moment of the ith order statistic given in BN, page 221; the stress-strength
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parameter given in BN, page 222; and others. This is not very convenient for practical

implementation of the mathematical properties. The aim of this note is to show that

many of the infinite sums and so the mathematical properties given in BN can be reduced

to known special functions, functions for which in-built routines are widely available.

LetN= {1,2,3, . . .},N0 =N∪{0}, Z−0 = {0,−1,−2, . . .}, R the set of real numbers,

R
+ the set of positive real numbers and C the set of complex numbers.

The closed form expressions in Section 2 involve several special functions. First

is the gamma function defined by Γ(a) =
∫ ∞

0
ta−1e−tdt for a ∈ R+. The second is

the polylogarithm function defined by Liν(z) = ∑
n≥1

n−ν zn for |z| < 1. The third is the

generalized hypergeometric function pFq[·] defined by

pFq[z] = pFq

[

a1, . . . ,ap

b1, . . . ,bq

;z

]

=
∞

∑
k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
, (1)

where (λ)µ denotes the Pochhammer symbol defined by

(λ)µ :=
Γ(λ+µ)

Γ(λ)
=











1,
(

µ= 0; λ ∈ C\{0}
)

,

λ(λ+1) · · ·(λ+n−1),
(

µ= n ∈ N; λ ∈ C
)

(2)

with the convention that (0)0 := 1. The Gauss hypergeometric function 2F1(a,b : c;z) is

the particular case of (1) for p = 2, q = 1. In the case a,b ∈ Z−0 are negative integers,

2F1(a,b : c;z) becomes a polynomial PN(z) of degree deg(PN) = N = min(−a,−b).
The fourth is the Fox Wright generalized hypergeometric function pΨ∗

q[·] with p

numerator parameters a1, . . . ,ap and q denominator parameters b1, . . . ,bq, defined by

(Kilbas et al., 2006, page 56)

pΨ∗
q

[

(a1,ρ1) , . . . ,(ap,ρp)

(b1,σ1) , . . . ,(bq,σq)
;z

]

=
∞

∑
n=0

p

∏
j=1

(a j)ρ jn

q

∏
j=1

(b j)σ jn

zn

n!
(3)

for a j ∈ C, j = 1,2, . . . , p, bk ∈ C, k = 1,2, . . . ,q, ρ j ∈ R
+, j = 1,2, . . . , p and σk ∈ R

+,

k = 1,2, . . . ,q. The series in (3) converges in the whole complex z-plane when

∆ := 1+
q

∑
j=1

σ j −
p

∑
j=1

ρ j > 0.
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If ∆ = 0, then the series in (3) converges for |z|< ∇, where

∇ :=

(

p

∏
j=1

ρ
−ρ j

j

)(

q

∏
j=1

σ
σ j

j

)

.

The particular case of (3) for ρ1 = · · ·=ρp = 1 andσ1 = · · ·=σq = 1 is the generalized

hypergeometric function in (1).

In-built routines for computing these special functions are widely available in

packages like Maple, Matlab and Mathematica. Gamma[z] in Mathematica computes the

gamma function, PolyLog[ν,z] in Mathematica computes the polylogarithm function,

HypergeometricPFQ[{a1,. . . ,ap}, {b1,. . . ,bq},z] in Mathematica computes

the generalized hypergeometric function, and so on. The routines allow for arbitrary

precision, so computational accuracy is not an issue.

2. Closed form expressions

The closed form expressions are given by Propositions 2.1 to 2.3. Proposition 2.1

expresses Fi:n(x), the cumulative distribution function of the ith order statistic given in

BN, page 217, equation (12), in terms of the Gauss hypergeometric function. Proposition

2.2 expresses the moments given in BN, page 220, Table 2 in terms of the Fox Wright

generalized hypergeometric function. These moments are to any real order, the ones

given in BN were for integer orders only. Proposition 2.3 expresses R, the stress-strength

parameter given in BN, page 222, in terms of the polylogarithm function.

Proposition 2.1 For all 1 ≤ i ≤ n and for all x ∈ (0,1),

Fi:n(x) =

(

n

i

)

Ai
2F1 (−n+ i, i; i+1;A) = Pn(A)

is a polynomial in A, where

A = 1−
C

(

θ (1− xa)b
)

C(θ)
.

Moreover, Fn:n(x) = An.

Proof: Follows by noting

Fi:n(x) =
1

B(i,n− i+1)

n−i

∑
k=0

(

n− i

k

)

(−1)k

k+ i
Ak+i
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=
Ai

B(i,n− i+1)

n−i

∑
k=0

(−n+ i)kΓ(k+ i)

Γ(k+ i+1)

Ak

k!

=
Ai

i B(i,n− i+1)

n−i

∑
k=0

(−n+ i)k(i)k

(i+1)k

Ak

k!

=
Ai Γ(n+1)

Γ(i+1) Γ(i,n− i+1)
2F1(−n+ i, i; i+1;A)

=
Ai n!

i! (n− i)!
2F1(−n+ i, i; i+1;A).

The hypergeometric function reduces to 1 when i = n, so Fn:n(x) = An.

Proposition 2.2 Let XKG, XKP, XKL and XKB be random variables following, respec-

tively, the Kumaraswamy geometric, Kumaraswamy Poisson, Kumaraswamy logarith-

mic and Kumaraswamy binomial distributions defined in BN. Then, for all real r >−a

and b > 0, we have

E
(

X r
KG

)

= b(1−θ)B
(

1+
r

a
,b
)

2Ψ∗
1

[

(1+b,b), (1,1)
(

1+b+
r

a
,b
)

;θ

]

, (4)

E
(

X r
KP

)

=
b θ

eθ −1
B
(

1+
r

a
,b
)

1Ψ∗
1

[

(b,b)
(

1+b+
r

a
,b
)

;θ

]

, (5)

E
(

X r
KL

)

=−
bθ

log(1−θ)
B
(

1+
r

a
,b
)

2Ψ∗
1

[

(b,b), (1,1)
(

1+b+
r

a
,b
)

;θ

]

(6)

and

E
(

X r
KB

)

=−
bmθ

(1+θ)m−1
B
(

1+
r

a
,b
)

2Ψ∗
1

[

(b,b), (1−m,1)
(

1+b+
r

a
,b
)

;−θ

]

. (7)

Each of these expressions is valid for all |θ |< 1.
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Proof: (4) follows by noting that

E
(

X r
KG

)

= b(1−θ)∑
n≥1

n B
(

1+
r

a
,nb

)

θ n−1

= b(1−θ)Γ
(

1+
r

a

)

∑
n≥1

n Γ(nb) θ n−1

Γ

(

1+
r

a
+nb

)

= (1−θ)Γ
(

1+
r

a

)

∑
n≥1

Γ(nb+1) θ n−1

Γ

(

1+
r

a
+nb

)

= (1−θ)Γ
(

1+
r

a

)

∑
m≥0

Γ(1+b+mb) θm

Γ

(

1+b+
r

a
+mb

)

= (1−θ)
Γ

(

1+
r

a

)

Γ(1+b)

Γ

(

1+b+
r

a

) ∑
m≥0

(1+b)mb (1)m
(

1+b+
r

a

)

mb

θm

m!

and that the infinite sum in the last step corresponds to a Fox Wright generalized

hypergeometric function with ∆ = 0, ∇ = 1.

(5) follows by noting that

E
(

X r
KP

)

=
b

eθ −1
∑
n≥1

B
(

1+
r

a
,nb
) θ n

(n−1)!

=
b Γ

(

1+
r

a

)

θ

eθ −1
∑

m≥0

Γ(b+mb)

Γ

(

1+b+
r

a
+mb

)

θm

m!

=
b Γ(b) Γ

(

1+
r

a

)

θ
(

eθ −1
)

Γ

(

1+
r

a
+b

) ∑
m≥0

(b)mb
(

1+b+
r

a

)

mb

θm

m!

and that the infinite sum in the last step corresponds to a Fox Wright generalized

hypergeometric function with ∆ = 1.

The proof of (6) is similar to the proof of (4).
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(7) follows by noting that

E
(

X r
KB

)

=
bθ

(1+θ)m−1
∑
n≥1

n

(

m

n

)

B
(

1+
r

a
,nb
)

θ n−1

=
bθm

(1+θ)m−1
Γ

(

1+
r

a

)

∑
n−1≥0

(−1)n−1(1−m)n−1Γ(b+(n−1)b)

Γ

(

1+b+
r

a
+(n−1)b

)

θ n−1

(n−1)!

=
bθm

(1+θ)m−1

Γ(b)Γ
(

1+
r

a

)

Γ

(

1+b+
r

a

) ∑
k≥0

(−1)k(1−m)k(b)kb
(

1+b+
r

a

)

kb

θ k

k!

and that the infinite sum in the last step corresponds to a Fox Wright generalized

hypergeometric function with ∆ = 0, ∇ = 1.

Proposition 2.3 For all |θ1|< 1 and |θ2|< 1,

R(θ1,θ2) = ∑
k≥0

∑
j≥0

(k+1)θ k
1θ

j
2

(k+ j+1)2(k+ j+2)

=
1

(θ2 −θ1)
2

[

Li2 (θ1)−Li2 (θ2)+θ1 −θ2

+(2−θ2/θ1 −θ2) log(1−θ1)− (1−θ2) log(1−θ2)
]

. (8)

Proof: The double series for R(θ1,θ2) converges for all |θ1| < 1, |θ2| < 1, where it is

term-wise differentiable with respect both θ1, θ2. To obtain a closed form expression for

R, we define

R(θ1,θ2) = ∑
k≥0

∑
j≥0

θ k
1θ

j
2

(k+ j+1)2(k+ j+2)
.

By the differentiability property,

R =
d

dθ1

(θ1 ·R(θ1,θ2)) . (9)
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By partial fractions,

R(θ1,θ2) = ∑
k≥0

∑
j≥0

(

1

k+ j+2
−

1

k+ j+1
+

1

(k+ j+1)2

)

θ k
1 θ

j
2 =: S1 −S2 +S3. (10)

By legitimate integration-summation order exchange and the definition of gamma

function,

S1 =
∫ ∞

0
e−2t

∑
k≥0

(

θ1e−t
)k

∑
j≥0

(

θ2e−t
) j

dt =
∫ ∞

0

e−2t dt
(

1−θ1e−t
)(

1−θ2e−t
) ,

S2 =
∫ ∞

0
e−t ∑

k≥0

(

θ1e−t
)k

∑
j≥0

(

θ2e−t
) j

dt =
∫ ∞

0

e−t dt
(

1−θ1e−t
)(

1−θ2e−t
) ,

S3 =
∫ ∞

0
te−t

∑
k≥0

(

θ1e−t
)k

∑
j≥0

(

θ2e−t
) j

dt =
∫ ∞

0

t e−t dt
(

1−θ1e−t
)(

1−θ2e−t
) .

Routine but lengthy calculations show that

S1 =
θ1 log(1−θ2)−θ2 log(1−θ1)

θ1θ2 (θ1 −θ2)
,

S2 =
log(1−θ2)− log(1−θ1)

θ1 −θ2

.

Using the fact

∫ ∞

0

t e−t dt

1−ae−t =
1

a
Li2(a),

we can reduce

S3 =
1

θ2 −θ1

∫ ∞

0

t e−t dt

1−θ1e−t −
1

θ2 −θ1

∫ ∞

0

t e−t dt

1−θ2e−t =

=
1

θ2 −θ1

[

1

θ1

Li2 (θ1)−
1

θ2

Li2 (θ2)

]

.
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Collecting S j, j = 1,2,3, we obtain by virtue of (10) that

R(θ1,θ2) =
θ2 (1−θ1) log(1−θ1)−θ1 (1−θ2) log(1−θ2)

θ1θ2 (θ2 −θ1)

+
1

θ2 −θ1

[

1

θ1

Li2 (θ1)−
1

θ2

Li2 (θ2)

]

=
(1−θ1) log(1−θ1)+Li2 (θ1)

θ1 (θ2 −θ1)
−

(1−θ2) log(1−θ2)+Li2 (θ2)

θ2 (θ2 −θ1)
.

The result follows by applying (9).
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