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Abstract

This article is directed at the problem of reliability estimation using ranked set sampling. A non-

parametric estimator based on kernel density estimation is developed. The estimator is shown to

be superior to its analog in simple random sampling. Monte Carlo simulations are employed to

assess performance of the proposed estimator. Two real data sets are analysed for illustration.
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1. Introduction

Ranked set sampling (RSS) is a cost-efficient alternative to simple random sampling

(SRS) in situations where exact measurements of sample units are difficult or expen-

sive to obtain but (judgment) ranking of them according to the variable of interest is

relatively easy and cheap. A variety of methods can be used to implement the ranking,

including visual inspection, expert opinion, or through the use of auxiliary variables, but

it cannot entail actual measurements on the selected units. The RSS was first introduced

by McIntyre (1952) in an agricultural experiment for estimating the mean pasture yield.

Since then, it has been well adopted to environmental, ecological and health studies. The

reader is referred to Chen (2007) for some novel applications in areas such as clinical

trials and genetic quantitative trait loci mappings.
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The RSS procedure can be described as follows. First, m2 units are collected as inde-

pendent and identically distributed draws from the population. These units are randomly

partitioned into m sets, each of size m. In the first set, the response judged to be small-

est is taken for full quantification; in the second set, the response judged to be second

smallest is taken; and so on, until in the last set, the response judged to be largest is

taken. These measured values, along with the associated ranks form a ranked set sample

of size m. The parameter m is called set size, which should be kept small to facilitate

the judgment ranking process. Let X[i] (i = 1, . . . ,m) be the ith judgement order statistic

from the ith set; then the resulting sample is denoted by X[1], . . . ,X[m]. Here, the square

bracket is used to indicate that the judgement ranks may not be correct. If our ranking

is accurate, then we replace the square brackets with the round ones, and X(i) becomes

the ith true order statistic from the ith set. If a larger sample size is needed the above

procedure may be repeated k times (cycles). So a ranked set sample, in its general setup,

may be represented by {X[i]r : i = 1, . . . ,m;r = 1, . . . ,k}, where X[i]r is the ith judgement

order statistic in the rth cycle.

A ranked set sample contains more information than a simple random sample of

comparable size because it contains not only information carried by quantified obser-

vations but also information provided by the ranking process. Thus, it is expected that

statistical procedures based on RSS tend to be superior to their SRS analogues. For a

good review of RSS and its applications, see Chen et el. (2004). The interested reader is

also referred to Wolfe (2004, 2010) and the references therein. Mahdizadeh and Arghami

(2013), and Tahmasebi and Jafari (2014) are examples of recently published papers on

RSS methods.

The stress-strength model, in its simplest form, defines the reliability of a component

as the probability that the strength of the unit (X ) is greater than the stress (Y ) imposed on

it. The quantity θ= P(X >Y ) is referred to as the reliability parameter. Although the use

of stress-strength models was originally motivated by problems in physics and engineer-

ing, it is not limited to these contexts. It is worth mentioning that θ provides a general

measure of the difference between two populations, and has found applications in differ-

ent fields such as economics, quality control, psychology, medicine and clinical trials.

For instance, if Y is the response of a control group, and X is that of a treatment group,

then θ is a measure of the treatment effect. This situation is exemplified in Section 5.

There has been continuous interest in the problem of estimating θ when X and Y are

independent variables, and belong to the same family of distributions. A comprehensive

account of this topic appears in Kotz et al. (2003). The reliability estimation under RSS

has also drawn some attention. Muttlak et al. (2010) derived estimators for θ using

RSS in the case of the exponential distribution. Sengupta and Mukhuti (2008) studied

unbiased estimation of θ using RSS in nonparametric setting based on the empirical

distribution function. They showed that the proposed estimator is more efficient than its

SRS counterpart, even in the presence of ranking errors. In this work, the kernel density

estimator is used to suggest a new estimator.
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Section 2 presents the estimator along with some notions and results which will be

used in the sequel. Theoretical properties are studied in Section 3. Results from simu-

lation experiments appear in Section 4. Two applications are provided in Section 5. A

summary and concluding remarks are given in Section 6. Proofs are postponed to an

appendix.

2. The proposed estimator

Let X1, . . . ,Xm and Y1, . . . ,Yn be independent random samples from two continuous pop-

ulations with density functions f and g, respectively. The corresponding distribution

functions are denoted by F and G. The standard nonparametric estimator of θ is

θ̃SRS =
1

mn

m∑

i=1

n∑

j=1

I(Xi >Yj). (1)

Under the assumptions of independence, it is possible to write

θ = P(X >Y ) = E (I(X >Y )) =
∫ ∫

I(u > v) f (u)g(v)dudv, (2)

where I(.) is the usual indicator function. An alternative estimator of θ can be made by

replacing f and g in (2) with some estimates. To this end, the kernel density estimators

may be utilized which are given by

f̂ (u) =
1

mh1

m∑

i=1

K

(
u−Xi

h1

)

and

ĝ(v) =
1

nh2

n∑

j=1

K

(
v−Yj

h2

)
,

where the kernel K is a symmetric probability density, and the smoothing parameters h1

and h2 are known as the bandwidths.
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Incorporating f̂ and ĝ in (2), we have

θ̂SRS =
∫ ∫

I(u > v) f̂ (u)ĝ(v)dudv

=
∫ ∫

I(u > v)

[
1

mh1

m∑

i=1

K

(
u−Xi

h1

)][
1

nh2

n∑

j=1

K

(
v−Yj

h2

)]
dudv

=
∫ ∫ ∫ ∫

I(u > v)

[
1

h1

K

(
u− x

h1

)][
1

h2

K

(
v− y

h2

)]
dudvdF̂(x)dĜ(y), (3)

where F̂ and Ĝ are the empirical distribution functions. Using the change of variables

r = (u− x)/h1 and s = (v− y)/h2 in (3), it follows that

θ̂SRS =
∫ ∫ [∫ ∫

I(h1r+ x > h2s+ y)K(r)K(s)dr ds

]
dF̂(x)dĜ(y)

=
∫ ∫

H(x− y)dF̂(x)dĜ(y),

where H is the distribution function of h2S− h1R and R and S are independent random

variables with common density K. If K is the standard normal density, then H is the

distribution function of a normal random variable with mean 0 and standard deviation

t =
√

h2
1 +h2

2. In this case, θ̂SRS takes the form

θ̂SRS =
1

mn

m∑

i=1

n∑

j=1

Φ

(
Xi −Yj

t

)
, (4)

where Φ(.) is the standard normal distribution function. Baklizi and Eidous (2006) used

the above estimator to construct confidence intervals for θ.

Proceeding in the same way, we arrive at the RSS analogue of (4) defined as

θ̂RSS =
1

mn

m∑

i=1

n∑

j=1

Φ

(
X[i]−Y[ j]

t

)
, (5)

where X[1], . . . ,X[m] and Y[1], . . . ,Y[n] are ranked set samples drawn from f and g (with a

single cycle), respectively. In the next section, properties of this estimator are studied.

The results can be extended for other choices of the kernel function.

The success of RSS procedures hinges on how well the within-set rankings to select

the units for measurement can be achieved. Although perfect rankings are the ideal case

for any RSS-based method, it is unlikely to be feasible. Thus it is worth in practice

to evaluate the effect of imperfect rankings on our procedures. The proper way to this

would be using statistical models designed to capture possible errors in the ranking
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process. A number of such imperfect ranking models can be found in the literature. We

build on a model introduced by Bohn and Wolfe (1994). They consider the distributions

of the judgment order statistics to be mixtures of distributions of the true order statistics.

The model is now set forth for our two-sample problem.

The density functions of the ith true and judgement order statistic of a random sample

of size m from f are denoted by f(i) and f[i], respectively. Similar notations are used for

a random sample of size n from G. We postulate an imperfect ranking model MX under

which X[i]’s are assumed to be independently distributed as

P
(
X[i] = X(r)

)
= p ir, (r = 1, . . . ,m),

where p ir is the probability that the rth order statistic is judged to have rank i, and

thus
∑m

r=1 p ir = 1. It is further assumed that
∑m

i=1 p ir = 1. Obviously, this is true in the

perfect ranking scenario, i.e. when p ii = 1 and p ir = 0(r 6= i). Similarly, we postulate

an imperfect ranking model MY under which Y[ j]’s are assumed to be independently

distributed as

P
(
Y[ j] =Y(s)

)
= q js, (s = 1, . . . ,n),

where q js is the probability that the sth order statistic is judged to have rank j, and there-

fore
∑n

s=1 q js = 1. Moreover, it is assumed that
∑n

j=1 q js = 1. The model considering

MX and MY together is referred to as M. Also, misplacement probability matrices are

denoted by P = [p ir]m×m and Q = [q js]n×n.

According to a basic identity in RSS, which simply follows from the binomial ex-

pansion, we have

1

m

m∑

i=1

f(i)(x) = f (x),
1

n

n∑

j=1

g( j)(y) = g(y). (6)

For details, see Chen et al. (2004, Chapter 2). It is easy to verify that these equations

also hold under the model M, i.e.

1

m

m∑

i=1

f[i](x) = f (x),
1

n

n∑

j=1

g[ j](y) = g(y). (7)

These identities are repeatedly used in the sequel.
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3. Main results

Theoretical properties of the suggested estimator are studied in this section. It can be

seen that (4) and (5) are both biased and their expectations are E
{

Φ
(

X−Y
t

)}
. The next

proposition presents variance expression for the two estimators.

Proposition 1 The variances of θ̂SRS and θ̂RSS are given by

m2n2 Var(θ̂SRS) = mn(n−1)EE2

{
Φ

(
X −Y

t

)∣∣∣X
}
+nm(m−1)EE2

{
Φ

(
X −Y

t

)∣∣∣Y
}

+mnE

{
Φ

2

(
X −Y

t

)}
+
(
mn−m2n−n2m

)
E2

{
Φ

(
X −Y

t

)}
(8)

and

m2n2 Var(θ̂RSS) = mE

(
n2E2

{
Φ

(
X −Y

t

)∣∣∣X
}
−

n∑

j=1

E2

{
Φ

(
X −Y[ j]

t

)∣∣∣X
})

+E

(
m2




n∑

j=1

E

{
Φ

(
X −Y[ j]

t

)∣∣∣Y[ j]
}


2

−
m∑

i=1




n∑

j=1

E

{
Φ

(
X −Y[ j]

t

)∣∣∣Y[ j]
}


2)

+mnE

{
Φ

2

(
X −Y

t

)}
−m2n2E2

{
Φ

(
X −Y

t

)}
. (9)

The variances of θ̂SRS and θ̂RSS are compared in the next proposition.

Proposition 2 Under model M, Var(θ̂RSS) ≤ Var(θ̂SRS), and the equality holds if f[i] =
f (i = 1, . . . ,m) and g[ j] = g( j = 1, . . . ,n). The latter happens when pir = 1/m(i,r =

1, . . . ,m) and q js = 1/n( j,s = 1, . . . ,n).

The RSS-based procedures tend to outperform their SRS analogues as long as the

judgment ranking is not random. In the case of estimating θ, this was formally shown

(under model M) in the previous proposition. The maximum efficiency is expected to

happen in the perfect ranking setup. We now give a result confirming this property. It

should be mentioned that the approach adopted in proof is distinctly different from that

of similar result in Sengupta and Mukhuti (2008).

Proposition 3 Under model M, the variance of θ̂RSS is minimized in the absence of

ranking errors.
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It is worth noting that the case of perfect rankings is not the only one where the min-

imum variance is achieved. It would also be attained in the case where model M holds,

and P and Q are permutation matrices. In addition, there are cases in the RSS literature

where an appropriately chosen imperfect rankings scheme can lead to more efficient es-

timation than is possible with perfect rankings. To put it another way, Proposition 3 may

not hold under other imperfect ranking models.

We close this section by some remarks on a general form of our proposed estimator.

The estimator (5) is defined for the case where RSS is done with a single cycle. The

ranked set sample size, however, is increased not by increasing the set size, but by in-

creasing the number of cycles. It is therefore important to study the multi-cycle case as

well. In this setup, the estimator is given by

θ̂RSS =
1

mknℓ

m∑

i=1

n∑

j=1

k∑

r=1

ℓ∑

s=1

Φ

(
X[i]r −Y[ j]s

t

)
, (10)

where {X[i]r : i = 1, . . . ,m;r = 1, . . . ,k} and {Y[ j]s : j = 1, . . . ,n;s = 1, . . . , ℓ} are ranked

set samples of size mk and nℓ drawn from f and g, respectively. The above estimator

can be represented as

θ̂RSS =
1

mn

m∑

i=1

n∑

j=1

h
(
X[i],Y[ j]

)
,

where

h
(
X[i],Y[ j]

)
=

1

kℓ

k∑

r=1

ℓ∑

s=1

Φ

(
X[i]r −Y[ j]s

t

)
.

Now, one can proceed with proving analogues of Propositions 1-3. The steps are similar

to current proofs in which

h
(
X[i],Y[ j]

)
= Φ

(
X[i]−Y[ j]

t

)
.

As a reviewer pointed out, the estimator (10) was also studied by Yin et al. (2016).

The authors, however, build on the theory of U-statistics in computing the variance

expression. Moreover, they only show that this estimator is asymptotically more efficient

than its counterpart in SRS. And last but not least, no theoretical result in the imperfect

ranking setup is provided in the aforesaid paper.

For simplicity, we consider the estimator (5) in the next section. But the data analysis

in Section 5 is based on the estimator (10).
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4. Simulation study

This section contains results of simulation studies performed to evaluate behaviours of

θ̂SRS and θ̂RSS. It is assumed that both populations follow normal, exponential or uniform

distribution. Suppose X and Y −µ are standard normal random variables. Then, it is

simply shown that

θ = Φ

(−µ√
2

)
,

where Φ(.) is the distribution function of X . Similarly, for standard exponential random

variables X and Y/α, we have

θ =
1

1+α
.

Finally, let X and Y/β be uniformly distributed on the unit interval. Then, it follows that

θ =

{
1−β/2 0 < β < 1

1/(2β) β ≥ 1
.

Under each parent distribution, five values were assigned to the associated parameter so

as to produce θ = 0.1,0.3,0.5,0.7,0.9. The appropriate parameter values are given in

Table 1. Also, set sizes (m,n) = (3,3),(3,7),(5,5),(10,10) were selected.

Table 1: Parameter values corresponding to different reliability parameters.

θ

Parameter 0.1 0.3 0.5 0.7 0.9

µ 1.812388 0.7416143 0 −0.7416143 −1.812388

α 9 7/3 1 3/7 1/9

β 5 5/3 1 3/5 1/5

We first consider the perfect ranking situation. For each combination of distributions

and sample sizes, 10,000 pairs of samples were generated in SRS and RSS settings.

The two estimators were computed from each pair of samples in the corresponding

designs, and their mean squared errors (MSEs) were determined. The relative efficiency

(RE) is defined as the ratio of M̂SE(θ̂SRS) to M̂SE(θ̂RSS). The RE values larger than

one indicate that θ̂RSS is more efficient than θ̂SRS. Tables 2 and 3 display the results (to

save space, tables for the uniform distribution are provided as supplementary material),

where RE1-RE4 are based on the following four methods for bandwidth selection, re-
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Table 2: Estimated REs under normal distribution (RE1, RE2, RE3 and RE4 are based on bandwidth

selection using AMISE, UCV, BCV and PI methods, respectively).

(m,n) θ RE1 RE2 RE3 RE4

(3,3) 0.1 1.00 (0.38) 1.02 (0.40) 1.00 (0.38) 1.56 (1.17)

0.3 1.48 (1.74) 1.53 (1.76) 1.48 (1.74) 1.95 (1.34)

0.5 2.38 (4.35) 2.36 (4.02) 2.38 (4.35) 2.04 (1.36)

0.7 1.44 (1.71) 1.49 (1.73) 1.44 (1.71) 1.91 (1.32)

0.9 0.99 (0.38) 1.00 (0.41) 0.99 (0.38) 1.51 (1.18)

(3,7) 0.1 1.00 (0.25) 1.04 (0.32) 1.00 (0.25) 1.68 (1.00)

0.3 1.45 (1.23) 1.64 (1.30) 1.45 (1.23) 2.23 (1.29)

0.5 2.71 (4.03) 2.72 (3.07) 2.71 (4.03) 2.42 (1.38)

0.7 1.43 (1.25) 1.61 (1.32) 1.43 (1.25) 2.18 (1.31)

0.9 0.99 (0.25) 1.01 (0.32) 0.99 (0.25) 1.59 (1.00)

(5,5) 0.1 1.01 (0.20) 1.09 (0.30) 1.01 (0.20) 1.81 (0.91)

0.3 1.46 (0.96) 1.83 (1.13) 1.46 (0.95) 2.73 (1.30)

0.5 3.51 (4.27) 3.52 (2.93) 3.51 (4.28) 3.14 (1.43)

0.7 1.48 (0.95) 1.87 (1.14) 1.48 (0.95) 2.77 (1.31)

0.9 1.02 (0.20) 1.11 (0.30) 1.02 (0.20) 1.84 (0.92)

(10,10) 0.1 1.02 (0.08) 1.19 (0.19) 1.02 (0.08) 2.14 (0.60)

0.3 1.43 (0.37) 2.30 (0.64) 1.43 (0.37) 4.13 (1.06)

0.5 5.78 (3.42) 6.12 (2.18) 5.78 (3.42) 5.81 (1.47)

0.7 1.44 (0.38) 2.28 (0.65) 1.44 (0.38) 4.09 (1.07)

0.9 1.02 (0.09) 1.18 (0.19) 1.02 (0.09) 2.11 (0.61)

spectively. Minimizing asymptotic mean integrated squared error (AMISE) of the kernel

density estimator is a basic scheme. Rudemo (1982) and Bowman (1984) proposed unbi-

ased (least-squares) cross-validation (UCV) method. Biased cross-validation (BCV) was

studied by Scott and George (1987). A plug-in (PI) method was suggested by Sheather

and Jones (1991). All these techniques are developed for SRS, and more details on them

can be found in Sheather (2004). The methods can be implemented in R statistical soft-

ware using the kedd and KernSmooth packages. In the RSS setup, we treat data as if

collected by SRS to choose bandwidth.

Sengupta and Mukhuti (2008) introduced the RSS competitor of (1) defined as

θ̃RSS =
1

mn

m∑

i=1

n∑

j=1

I(X[i] >Y[ j]). (11)

The entries of Tables 2–4 appearing in parentheses show efficiency of θ̂RSS relative to

θ̃RSS.
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Table 3: Estimated REs under exponential distribution (RE1, RE2, RE3 and RE4 are based on bandwidth

selection using AMISE, UCV, BCV and PI methods, respectively).

(m,n) θ RE1 RE2 RE3 RE4

(3,3) 0.1 0.96 (0.33) 0.97 (0.35) 0.96 (0.33) 1.37 (1.19)

0.3 1.51 (1.93) 1.56 (1.96) 1.51 (1.93) 1.99 (1.51)

0.5 2.23 (4.11) 2.21 (3.79) 2.23 (4.11) 2.04 (1.38)

0.7 1.50 (1.90) 1.55 (1.94) 1.50 (1.90) 2.00 (1.50)

0.9 0.97 (0.33) 0.97 (0.35) 0.97 (0.33) 1.35 (1.20)

(3,7) 0.1 0.93 (0.13) 1.04 (0.33) 0.93 (0.13) 1.27 (0.71)

0.3 1.39 (1.33) 1.88 (1.58) 1.39 (1.33) 2.44 (1.52)

0.5 2.45 (3.76) 2.43 (2.55) 2.45 (3.76) 2.41 (1.37)

0.7 1.45 (1.34) 1.64 (1.47) 1.45 (1.34) 2.21 (1.43)

0.9 0.93 (0.26) 0.93 (0.28) 0.93 (0.26) 1.26 (0.98)

(5,5) 0.1 0.92 (0.14) 1.02 (0.28) 0.92 (0.14) 1.32 (0.74)

0.3 1.44 (1.07) 2.13 (1.48) 1.44 (1.07) 2.83 (1.50)

0.5 2.94 (3.78) 3.00 (2.38) 2.94 (3.78) 2.96 (1.40)

0.7 1.43 (1.08) 2.07 (1.47) 1.43 (1.08) 2.78 (1.50)

0.9 0.93 (0.15) 1.01 (0.28) 0.93 (0.15) 1.31 (0.75)

(10,10) 0.1 0.93 (0.05) 1.05 (0.19) 0.93 (0.05) 1.22 (0.32)

0.3 1.30 (0.38) 3.42 (1.14) 1.30 (0.38) 4.33 (1.32)

0.5 4.77 (3.14) 5.33 (1.67) 4.77 (3.14) 5.50 (1.41)

0.7 1.27 (0.37) 3.34 (1.12) 1.27 (0.37) 4.30 (1.30)

0.9 0.93 (0.05) 1.04 (0.19) 0.93 (0.05) 1.23 (0.33)

It is observed that θ̂SRS is outperformed by θ̂RSS, using one of the bandwidths, at

least. Moreover, the results from AMISE and BCV methods are in close agreement.

For each pair of sample sizes, the RE values are generally larger when the reliability

parameter is 0.5. Also, the PI method works better than the others for θ 6= 0.5. It is to

be noted that in the case of θ = 0.1,0.9, only RE4 values exceed unity markedly. Given

a total sample size, the efficiency gain is generally larger for equal sample sizes setup.

Compare similar REs for (m,n) = (3,7),(5,5) under different parent distributions.

As to the comparison of the suggested estimator with its rival based on empirical

distribution function, the following conclusions can be made (based on entries given

in parentheses in Tables 2 and 3). Again, the RE values are generally larger for the

reliability parameter 0.5, given a pair of sample sizes. There are cases that θ̂RSS is less

efficient than θ̃RSS. For example, see the results when (m,n) = (5,5),(10,10) and θ =

0.1,0.9. Sometimes the REs from AMISE, UCV and BCV methods fall much below

unity. In such instances, the PI method is still the best one.
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Table 4: Estimated REs for (m,n) = (3,3) (upper panel) and (m,n) = (5,5) (lower panel) with imperfect

ranking (RE1, RE2, RE3 and RE4 are based on bandwidth selection using AMISE, UCV, BCV and PI

methods, respectively).

Dist. θ RE1 RE2 RE3 RE4

Normal 0.1 1.03 (0.42) 1.05 (0.45) 1.03 (0.42) 1.47 (1.18)

0.3 1.41 (1.89) 1.44 (1.90) 1.41 (1.89) 1.65 (1.31)

0.5 1.94 (4.10) 1.92 (3.78) 1.94 (4.10) 1.70 (1.31)

0.7 1.34 (1.82) 1.37 (1.82) 1.34 (1.82) 1.63 (1.29)

0.9 0.99 (0.43) 1.00 (0.46) 0.99 (0.43) 1.37 (1.18)

Exponential 0.1 0.98 (0.38) 0.98 (0.40) 0.98 (0.38) 1.30 (1.26)

0.3 1.40 (2.03) 1.43 (2.05) 1.40 (2.03) 1.71 (1.46)

0.5 1.82 (4.01) 1.81 (3.70) 1.82 (4.01) 1.69 (1.36)

0.7 1.36 (2.01) 1.39 (2.03) 1.36 (2.01) 1.66 (1.45)

0.9 0.96 (0.37) 0.96 (0.39) 0.96 (0.37) 1.21 (1.22)

Normal 0.1 1.02 (0.22) 1.10 (0.33) 1.02 (0.22) 1.65 (0.94)

0.3 1.42 (1.08) 1.70 (1.24) 1.42 (1.08) 2.31 (1.30)

0.5 2.81 (4.07) 2.80 (2.79) 2.81 (4.07) 2.58 (1.40)

0.7 1.39 (1.07) 1.70 (1.23) 1.39 (1.07) 2.33 (1.30)

0.9 1.00 (0.23) 1.07 (0.34) 1.00 (0.23) 1.60 (0.95)

Exponential 0.1 0.94 (0.16) 1.00 (0.30) 0.94 (0.16) 1.26 (0.79)

0.3 1.39 (1.19) 1.91 (1.55) 1.39 (1.19) 2.41 (1.49)

0.5 2.59 (3.82) 2.63 (2.38) 2.59 (3.82) 2.58 (1.39)

0.7 1.42 (1.16) 1.99 (1.52) 1.42 (1.16) 2.57 (1.49)

0.9 0.94 (0.16) 1.02 (0.30) 0.94 (0.16) 1.29 (0.78)

As mentioned before, although perfect rankings are ideal case for any RSS-based

method, it is unlikely to be feasible. Let P and Q be misplacement probability matrices

defined in Section 2. The perfect ranking setup corresponds to the case that P and Q

are the identity matrices. We conducted a partial simulation study to assess performance

of the suggested estimator in the presence of ranking errors. To do so, the REs were

estimated when (m,n) = (3,3),(5,5) and the matrices P and Q are selected to be

P = Q =




0.9 0.1 0

0.1 0.8 0.1

0 0.1 0.9




and

P = Q =




0.9 0.1 0 0 0

0.1 0.8 0.1 0 0

0 0.1 0.8 0.1 0

0 0 0.1 0.8 0.1

0 0 0 0.1 0.9



,
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respectively. The results are given in Table 4. The entries outside parentheses are gener-

ally smaller than similar entries in Tables 2 and 3. We note, however, that these REs still

exceed the unity, and this is consistent with our theoretical results. There is not a uni-

form trend for entries inside parentheses as compared with analogous ones under perfect

ranking assumption. It is to be mentioned that these REs are associated with θ̂RSS and

θ̃RSS that both are affected by ranking errors.

All simulation studies in this work are programmed using R statistical software, and

the corresponding code is available from the first author.

5. Application

The RSS is applicable in the following situations: (i) the ranking of a set of sampling

units can be done easily by judgment relating to their latent values of the variable of

interest through visual inspection, expert opinion, etc. (ii) there are certain easily acces-

sible concomitant variables. We now illustrate the proposed procedure using some real

data from two different fields.

5.1. Agriculture

Murray et al. (2000) conducted an experiment in which apple trees are sprayed with

chemical containing fluorescent tracer, Tinopal CBS-X, at 2% concentration level in wa-

ter. Two nine-tree plots were chosen for spraying. One plot was sprayed at high volume,

using coarse nozzles on the sprayer to give a large average droplet size. The other plot

was sprayed at low volume, using fine nozzles to give a small average droplet size. Fifty

sets of five leaves were identified from the central five trees of each plot, and used to

draw a ranked set sample with set size 5 and cycle size 10, from each plot. The variable

of interest is the percentage of area covered by the spray on the surface of the leaves. The

formal measurement entails chemical analysis of the solution collected from the surface

of the leaves, and thereby is a time-consuming and expensive process. The judgment

ranking within each set is based on the visual appearance of the spray deposits on the

leaf surfaces when viewed under ultraviolet light. Clearly, the latter method is cheap,

and fairly accurate if implemented by an expert observer.

The data are given in Table 5, where measurements obtained from the plot sprayed

at high (low) volume constitute the control (treatment) group. The interest centres on

knowing whether the sprayer settings affect the percentage area coverage. If X (Y ) de-

notes the response variable from treatment (control) group, then θ̂RSS and θ̃RSS can serve

as measures of the treatment effect.

Let θ̆ be either θ̂RSS or θ̃RSS. Then the bootstrap method, introduced by Efron (1979),

can be used to estimate the variance of θ̆, and to construct confidence interval. Modarres

et al. (2006) suggested three bootstrap algorithms in RSS design. Bootstrap ranked set

sampling (BRSS) and bootstrap RSS by rows (BRSSR) are the most efficient methods
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Table 5: Ranked set sample data for the percentage area covered on the surface of the leaves of apple

trees.

Group Cycle Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Control 1 0.003 0.028 0.244 0.057 0.143

2 0.039 0.119 0.126 0.105 0.565

3 0.034 0.118 0.130 0.218 0.296

4 0.051 0.104 0.193 0.210 0.150

5 0.032 0.141 0.130 0.250 0.229

6 0.069 0.070 0.260 0.225 0.285

7 0.100 0.091 0.244 0.130 0.347

8 0.012 0.096 0.069 0.373 0.133

9 0.046 0.117 0.126 0.223 0.273

10 0.028 0.083 0.108 0.212 0.261

Treatment 1 0.036 0.137 0.183 0.270 0.487

2 0.250 0.181 0.290 0.328 0.715

3 0.089 0.032 0.269 0.419 0.315

4 0.180 0.111 0.130 0.194 0.742

5 0.100 0.009 0.184 0.277 0.122

6 0.042 0.089 0.199 0.269 0.395

7 0.044 0.083 0.227 0.177 0.742

8 0.044 0.171 0.067 0.192 0.336

9 0.009 0.017 0.217 0.438 0.544

10 0.071 0.132 0.310 0.343 0.379

which are used here. Suppose B pairs of bootstrap samples are drawn from the two

ranked set samples by either of the algorithms. If θ̆b is value of the estimator based on

data in the b th (b = 1, . . . ,B) replication, then the bootstrap variance estimator is given

by

V̂arboot(θ̆) =
1

B−1

B∑

b=1

(
θ̆b − θ̄

)2
, (12)

where θ̄ =
∑B

b=1 θ̆b/B. An approximate (1−α) normal interval for θ is then constructed

as

(
θ̆− zα/2

√
V̂arboot(θ̆), θ̆+ zα/2

√
V̂arboot(θ̆)

)
, (13)

where zα/2 is the (1−α/2) quantile of the standard normal distribution. We may alter-

natively use (1−α) bootstrap percentile interval defined as

(
θ̆α/2, θ̆1−α/2

)
, (14)

where θ̆β is the β quantile of θ̆1, . . . , θ̆B.
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Table 6: Estimates of θ along with their estimated variances, and the corresponding 0.95 confidence

intervals.

Estimator Value Estimated variance Normal interval Bootstrap interval

θ̂RSS (AMISE) 0.5903 0.000456 (0.548, 0.632) (0.550, 0.633)

0.000468 (0.548, 0.633) (0.549, 0.634)

θ̂RSS (UCV) 0.6161 0.001021 (0.553, 0.679) (0.557, 0.680)

0.001052 (0.553, 0.680) (0.556, 0.684)

θ̂RSS (BCV) 0.6118 0.000748 (0.558, 0.665) (0.558, 0.664)

0.000789 (0.557, 0.667) (0.557, 0.667)

θ̂RSS (PI) 0.6168 0.000927 (0.557, 0.676) (0.559, 0.678)

0.000964 (0.556, 0.678) (0.558, 0.680)

θ̃RSS 0.6184 0.001163 (0.552, 0.685) (0.553, 0.685)

0.001224 (0.550, 0.687) (0.552, 0.688)

Table 6 displays the estimates along with their estimated variances computed using

(12). Two 0.95 intervals (13) and (14) are also reported. The number of bootstrap repli-

cations is chosen to be 5000, and entries associated with BRSSR method are in italic.

Clearly, the kernel-based estimators have smaller estimated variances as expected. It is

concluded that the treatment effect is significant at 0.05 level as none of the intervals

contain 0.5.

5.2. Medicine

The RSS can be used in studying certain medical measures, which usually involves

expensive laboratory tests. Samawi et al. (2009) employed this design in comparing

bilirubin level between male and female jaundice babies. To this end, blood sample

must be taken from the sampled babies and tested in a laboratory. But, on the other

hand, the ranking of the bilirubin levels of a small number of babies can be done by

observing whether their face, chest, lower parts of the body and the terminal parts of the

whole body are yellowish. The yellowish color goes from face to the terminal parts of

the whole body, the level of bilirubin in blood goes higher.

Table 7 shows the results of 15 measurements for male/female babies collected by

RSS with set size 3 and cycle size 5. Assume that X and Y represent the response vari-

able for male and female babies, respectively. Then θ̂RSS and θ̃RSS can be used to decide

whether male babies are more likely to experience jaundice. Table 8 displays the esti-

mates along with their estimated variances. The corresponding 0.95 confidence intervals

are also provided. Again, the kernel-based estimators have smaller estimated variances.

All the intervals contain 0.5, and the null hypothesis that male and female babies are

equally likely to experience jaundice is not rejected, at 0.05 level.
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Table 7: Ranked set sample data of bilirubin level in jaundice babies.

Group Cycle Rank 1 Rank 2 Rank 3

Male 1 7.50 10.50 7.30

2 7.50 15.00 8.60

3 8.90 14.60 13.53

4 7.00 11.90 15.70

5 10.24 13.18 18.47

Female 1 1.20 8.94 15.00

2 7.50 12.82 10.80

3 8.00 8.82 10.70

4 8.90 8.94 14.59

5 8.53 8.20 18.29

Table 8: Estimates of θ along with their estimated variances, and the corresponding 0.95 confidence inter-

vals.

Estimator Value Estimated variance Normal interval Bootstrap interval

θ̂RSS (AMISE) 0.5549 0.002183 (0.463, 0.646) (0.464, 0.649)

0.001813 (0.471, 0.638) (0.474, 0.638)

θ̂RSS (UCV) 0.5753 0.005465 (0.430, 0.720) (0.409, 0.704)

0.004715 (0.441, 0.710) (0.421, 0.687)

θ̂RSS (BCV) 0.5576 0.002398 (0.462, 0.654) (0.464, 0.657)

0.002016 (0.470, 0.646) (0.473, 0.647)

θ̂RSS (PI) 0.5774 0.005067 (0.438, 0.717) (0.434, 0.717)

0.004172 (0.451, 0.704) (0.450, 0.700)

θ̃RSS 0.5467 0.006564 (0.388, 0.705) (0.382, 0.707)

0.005709 (0.399, 0.695) (0.400, 0.689)

6. Conclusion

The RSS design employs ranking of the characteristic of interest via auxiliary infor-

mation to improve estimation of population attributes. The rankings can be performed

through subjective judgment, concomitant variable, or a combination of them. These

preparatory rankings are made before any actual measurements on the variable of in-

terest, and are utilized to select more informative units to include in our sample for

measurement.

In this article, a nonparametric reliability estimator based on kernel density estima-

tion is suggested. Some theoretical results are presented under an imperfect ranking

model. The perfect ranking setup is treated separately. Monte Carlo simulations are
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used to compare the estimator with its SRS competitor, and the RSS analogue based

on empirical distribution function. The results confirm preference of the new estimator

in many situations. In a subsequent work, we plan to study interval estimation of the

reliability parameter under the RSS scheme.
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Appendix

Proof of Proposition 1. It is easy to show that

m2n2E(θ̂2
SRS) = E(A1 +A2 +A3 +A4), (15)

where

E(A1) = E

{
m∑

i6=i′=1

n∑

j 6= j′=1

Φ

(
Xi −Yj

t

)
Φ

(
Xi′ −Yj′

t

)}

= m(m−1)n(n−1)E2

{
Φ

(
X −Y

t

)}
, (16)

E(A2) = E

{
m∑

i=1

n∑

j 6= j′=1

Φ

(
Xi −Yj

t

)
Φ

(
Xi −Yj′

t

)}

= mn(n−1)EE2

{
Φ

(
X −Y

t

)∣∣∣X
}
, (17)

E(A3) = E

{
n∑

j=1

m∑

i6=i′=1

Φ

(
Xi −Yj

t

)
Φ

(
Xi′ −Yj

t

)}

= nm(m−1)EE2

{
Φ

(
X −Y

t

)∣∣∣Y
}

(18)
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and

E(A4) = E

{
m∑

i=1

n∑

j=1

Φ
2

(
Xi −Yj

t

)}
= mnE

{
Φ

2

(
X −Y

t

)}
. (19)

From (15)-(19) and the expectation of θ̂SRS, the proof of the first part is complete. Simi-

larly,

m2n2E(θ̂2
RSS) = E(B1 +B2 +B3), (20)

where

E(B1) = E

{
m∑

i6=i′=1

n∑

j 6= j′=1

Φ

(
X[i]−Y[ j]

t

)
Φ

(
X[i′]−Y[ j′]

t

)

+
n∑

j=1

m∑

i6=i′=1

Φ

(
X[i]−Y[ j]

t

)
Φ

(
X[i′]−Y[ j]

t

)}

= E

(
m∑

i6=i′=1

n∑

j 6= j′=1

E

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}

E

{
Φ

(
X[i′]−Y[ j′]

t

)∣∣∣Y[ j′]
}

+
n∑

j=1

m∑

i6=i′=1

E

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}

E

{
Φ

(
X[i′]−Y[ j]

t

)∣∣∣Y[ j]
})

= E

(


m∑

i=1

n∑

j=1

E

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}


2

−
m∑

i=1

n∑

j=1

E2

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}

−
m∑

i=1

n∑

j 6= j′=1

E

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}

E

{
Φ

(
X[i]−Y[ j′]

t

)∣∣∣Y[ j′]
})

= E

(


m∑

i=1

n∑

j=1

E

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}


2

−
m∑

i=1

[
n∑

j=1

E2

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}

+
n∑

j 6= j′=1

E

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}

E

{
Φ

(
X[i]−Y[ j′]

t

)∣∣∣Y[ j′]
}])

= E

(
m2




n∑

j=1

E

{
Φ

(
X −Y[ j]

t

)∣∣∣Y[ j]
}


2

−
m∑

i=1




n∑

j=1

E

{
Φ

(
X[i]−Y[ j]

t
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2)
,

(21)
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E(B2) = E

{
m∑

i=1

n∑

j 6= j′=1

Φ

(
X[i]−Y[ j]

t

)
Φ

(
X[i]−Y[ j′]

t

)}

= mE

{
n∑

j 6= j′=1

Φ

(
X −Y[ j]

t

)
Φ

(
X −Y[ j′]

t

)}

= mE

(
n∑

j 6= j′=1

E

{
Φ

(
X −Y[ j]

t

)∣∣∣X
}

E

{
Φ

(
X −Y[ j′]

t

)∣∣∣X
})

= mE

(


n∑

j=1

E

{
Φ

(
X −Y[ j]

t

)∣∣∣X
}


2

−
n∑

j=1

E2

{
Φ

(
X −Y[ j]

t

)∣∣∣X
})

= mE

(
n2E2

{
Φ

(
X −Y

t

)∣∣∣X
}
−

n∑

j=1

E2

{
Φ

(
X −Y[ j]

t

)∣∣∣X
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, (22)

and

E(B3) = E

{
m∑

i=1

n∑

j=1

Φ
2

(
X[i]−Y[ j]

t

)}
= mnE

{
Φ

2

(
X −Y

t

)}
. (23)

Now the second part follows from (20)-(23) and the expectation of θ̂RSS.

Proof of Proposition 2. Using equations (8) and (9), it can be shown

m2n2
[
Var(θ̂SRS)−Var(θ̂RSS)

]
= ∆1 +∆2 +∆3, (24)

where

∆1 = E
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, (25)
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∆2 = mn(n−1)EE2
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and
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Φ

(
X −Y[ j]

t

)})2

−
n∑

j 6= j′=1

E

{
Φ

(
X −Y[ j]

t

)}
E

{
Φ

(
X −Y[ j′]

t

)}]

= m(m−1)

[
n∑

j=1

E2

{
Φ

(
X −Y[ j]

t

)}
− 1

n

(
n∑

j=1

E

{
Φ

(
X −Y[ j]

t

)})2]

= m(m−1)
n∑

j=1

E2

{
Φ

(
X −Y[ j]

t

)
−Φ

(
X −Y

t

)}
. (27)

Clearly, ∆i ≥ 0(i = 1,2,3), as was to be shown. Proof of the next part is straightforward,

and is omitted.
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The next lemma paves the way for Proposition 3.

Lemma 1 If ℓ =
∑n

j=1 E

{
Φ

(
X−Y( j)

t

)∣∣∣Y( j)

}
and L =

∑n
j=1 E

{
Φ

(
X−Y[ j]

t

)∣∣∣Y[ j]
}

, then

Var(ℓ)≤ Var(L).

Proof of Lemma 1. Using conditional variance formula, we have

Var(L) =

n∑

j=1

Var

(
E

{
Φ

(
X −Y[ j]

t

)∣∣∣Y[ j]
})

≥
n∑

j=1

n∑

k=1

q jkVar

(
E

{
Φ

(
X −Y(k)

t

)∣∣∣Y(k)
})

=
n∑

k=1

Var

(
E

{
Φ

(
X −Y(k)

t

)∣∣∣Y(k)
})

= Var(ℓ),

as was asserted.

Proof of Proposition 3. First, some necessary notions and results from matrix algebra

are provided.

The L1, L∞ and L2 norms for an r× c matrix A = [a i j] are defined as

‖A‖1 = max
j=1,...,c

r∑

i=1

a i j,

‖A‖∞ = max
i=1,...,r

c∑

j=1

a i j

and

‖A‖2 =
√

λmax(A′A),

where λmax(A
′A) is the largest eigenvalue of A′A matrix. If the product of matrices A

and B is defined, then

‖AB‖2 ≤ ‖A‖2‖B‖2 (28)

and

‖A‖2
2 ≤ ‖A‖1‖A‖∞. (29)

See Datta (2010) for more details.
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In view of (9), it suffices to show that

E

(
m2




n∑

j=1

E

{
Φ

(
X −Y( j)

t

)∣∣∣Y( j)

}


2

−
m∑

i=1




n∑

j=1

E

{
Φ

(
X −Y( j)

t

)∣∣∣Y( j)

}


2)
≤

E

(
m2




n∑

j=1

E

{
Φ

(
X −Y[ j]

t

)∣∣∣Y[ j]
}


2

−
m∑

i=1




n∑

j=1

E

{
Φ

(
X −Y[ j]

t

)∣∣∣Y[ j]
}


2)
(30)

and

E

(
n∑

j=1

E2

{
Φ

(
X −Y[ j]

t

)∣∣∣X
})

≤ E

(
n∑

j=1

E2

{
Φ

(
X −Y( j)

t

)∣∣∣X
})

. (31)

We begin with proving the first inequality. Assume that Z(i)=
∑n

j=1 E

{
Φ

(
X(i)−Y[ j]

t

)∣∣∣Y[ j]
}

and Z[i] =
∑n

j=1 E
{

Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}

. Then one can write

Z[i] =

n∑

j=1

m∑

k=1

p ikE

{
Φ

(
X(k)−Y[ j]

t

)∣∣∣Y[ j]
}

=

m∑

k=1

p ikZ(k). (32)

Let ΩY be the sample space on whichY is defined. If P= [p ir]m×m and Z′=
(
Z(1)(ϑ), . . . ,Z(m)(ϑ)

)

given a fixed ϑ ∈ ΩY , then using (28), (29) and (32) it follows that

m∑

i=1

Z2
[i](ϑ) =

m∑

i=1

(
m∑

k=1

p ikZ(k)(ϑ)

)2

= ‖PZ‖2
2 ≤ ‖P‖2

2 ‖Z‖2
2

≤ ‖P‖1 ‖P‖∞

m∑

i=1

Z2
(i)(ϑ)

=
m∑

i=1

Z2
(i)(ϑ).

The last equality holds because
∑m

i=1 p ik =
∑m

k=1 p ik = 1. Hence,

E

(
m2




n∑

j=1

E

{
Φ

(
X −Y[ j]

t

)∣∣∣Y[ j]
}


2

−
m∑

i=1




n∑

j=1

E

{
Φ

(
X(i)−Y[ j]

t

)∣∣∣Y[ j]
}


2)
≤

E

(
m2




n∑

j=1

E

{
Φ

(
X −Y[ j]

t

)∣∣∣Y[ j]
}


2

−
m∑

i=1




n∑

j=1

E

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}


2)
.



M. Mahdizadeh and Ehsan Zamanzade 265

Now, (30) is deduced if

E

(
m2




n∑

j=1

E

{
Φ

(
X −Y( j)

t

)∣∣∣Y( j)

}


2

−
m∑

i=1




n∑

j=1

E

{
Φ

(
X(i)−Y( j)

t

)∣∣∣Y( j)

}


2)
≤

E

(
m2




n∑

j=1

E

{
Φ

(
X −Y[ j]

t

)∣∣∣Y[ j]
}


2

−
m∑

i=1




n∑

j=1

E

{
Φ

(
X(i)−Y[ j]

t

)∣∣∣Y[ j]
}


2)
(33)

For i = 1, . . . ,m, suppose ℓ(i) =
∑n

j=1 E
{

Φ

(
X(i)−Y( j)

t

)∣∣∣Y( j)

}
and ℓ be as in Lemma

1. We note that ℓ(1) < · · ·< ℓ(m) are order statistics from a sample of size m. Therefore,

m∑

i=1

E(ℓ2
(i)) =

m∑

i=1

∫
t2 fℓ(i)(t)dt = m

∫
t2 fℓ(t)dt = mE(ℓ2), (34)

where fℓ(i) and fℓ denote the density function of ℓ(i) and ℓ, respectively. Similarly, one

can define L(i) =
∑n

j=1 E

{
Φ

(
X(i)−Y[ j]

t

)∣∣∣Y[ j]
}

, and conclude that

m∑

i=1

E(L2
(i)) = mE(L2), (35)

where L is as in Lemma 1. From (34) and (35), (33) reduces to E(ℓ2) ≤ E(L2). This is

equivalent to Var(ℓ)≤ Var(L) which holds thanks to Lemma 1.

Assume that W( j) = E
{

Φ

(
X−Y( j)

t

)∣∣∣X
}

and W[ j] = E
{

Φ

(
X−Y[ j]

t

)∣∣∣X
}

. Then, it can

be shown that W[ j] =
∑n

k=1 q jkW( j). Let ΩX be the sample space on which X is defined.

If Q = [q js]n×n and WT =
(
W(1)(η), . . . ,W(n)(η)

)
for each fixed η ∈ ΩX , then applying

(28) and (29) using Q and W yields

n∑

j=1

W 2
[ j](η) =

n∑

j=1

(
m∑

k=1

q jkW(k)(η)

)2

= ‖QW‖2
2 ≤ ‖Q‖2

2 ‖W‖2
2

≤ ‖Q‖1 ‖Q‖∞

m∑

i=1

W 2
(i)(η)

=
m∑

i=1

W 2
(i)(η).

This completes the proof of (31).




