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Supplementary Material A

The Gâteax derivative at p in the direction of [h] is defined

GΦ(p,h) = lim
β→0+

Φ(p+βh)−Φ(p)

β
= lim
β→0+

Ψ[M(P+βH)]−Ψ[M(P)]

β
.

Considering the first-order Taylor expansion serie of the non-linear functions of the elements of

the information matrix

M(p+βh)≈ M(P)+β

q
∑

i=1

hi
∂M(P)

∂ pi

,

it results

GΦ(p,h) = lim
β→0+

Ψ

[

M(P)+β

( q
∑

i=1

hi
∂M(P)

∂ pi

)]

−Ψ[M(P)]

β

= GΨ

[

M(P),

q
∑

i=1

hi
∂M(P)

∂ pi

]

.

The directional derivative and the Gâteaux are related by

FΦ(p,h) = GΦ(p,h− p),

so that

FΦ(p,h) = FΨ

[

M(P),M(P)+

q
∑

i=1

(hi − pi)
∂M(P)

∂ pi

]

and, if h = e j, then

FΦ(p,e j) = FΨ

[

M(P),M(P)+
∂M(P)

∂ p j

−

q
∑

i=1

pi
∂M(P)

∂ pi

]

.

For D-optimality criterion Ψ[M(P)] = Ln|M(P)|, then

∂Ψ[M(P)]

∂ pr

=

q
∑

i=1

q
∑

j=1

m−1
i j (p)

∂mi j(p)

∂ pr

= Tr

[

M−1(P)
∂M(P)

∂ pr

]

,

where mi j(p) is the (i, j)th
entry of the matrix M(P). So,

FΦD
(p,e j) = Tr

[

M−1(P)
∂ M(P)

∂ p j

]

−

q
∑

i=1

piTr

[

M−1(P)
∂ M(P)

∂ pi

]

.

3



Supplementary Material B

In the case of unrestricted examples, the scenarios were:

1. Random Designs (RD). For each pi ∈ ξ j, i = 1, . . . ,n, j = 1, . . . ,M

generate uik ∼U(0,1), k = 1, . . . ,q, so that pi = (pi
1, . . . , pi

q) being pi
k =

uik
∑q

k=1 uik

.

2. Random Uniform Desings (RUD). Some authors warn the previous sampling methodol-

ogy can generate non-uniform distributions. Then, one way of obtaining a uniform sample

from the simplex is pi
k =

−ln(uik)
∑q

k=1−ln(uik)
, which generates IID random samples from an

exponential distribution.

3. Vertex-and-centroid-near-point Designs (VD). Let C be the matrix containing the ver-

tices, the overall centroid and the centroid of all lower dimensional simplices of a (q−1)-
dimensional simplex. These points were obtained invoking the program crvtave of Piepel

(REF). From an uniform grid G,

G = {p = (p1, . . . , pq) ∈ S / pi =
1

k
· j, j ∈ N, 0 ≤ j ≤ k, i = 1, . . . ,q},

construct a distance matrix D, where di j =‖ pi − p j ‖2, pi ∈C and p j ∈ G. Fill M/2 initial

designs with a random sample with replacement of the
M ·N

2
points with lower di j values.

The M/2 remaining designs will be filled with random points of G.

When there are limitations over the ingredient quantities, previous scenarios could not be

valid. So it is necessary to define new situations:

1. Random Restricted Designs (RRD).

i) Calculate di fi =Ui −Li for each i = 1, . . . ,q.

ii) Sort the list of di fi in increasing order: di fi1 , . . . ,di fiq .

iii) For each pi ∈ ξ j , i = 1, . . . ,n, j = 1, . . . ,M, generate uik ∼ U(0,1), k = 1, . . . ,q− 1

satisfying Li j
≤ uik ≤ Ui j

, j = 1, . . . ,q− 1, so that pi = (ui1, . . . ,ui1(q−1),uiq) being

uiq = 1−
∑q−1

k=1 uik.

iv) If Liq ≤ uiq ≤Uiq , then add pi to the design. Otherwise, return to iii).

2. Extreme Vertices Design (EVD). Generate the vertices, midpoints of edges connecting

these vertices and overall centroid of the constrained region and collect them into the ma-

trix V . Create interior points by averaging all possible pairs of points of V (Fillv function

of mixexp R package) and collect them into the matrix F . Fill each ξ j, j = 1, . . . ,M with a

N-size random sample with replacement of F .

3. Semi-Extreme Vertices Design (SEVD). Designs are analogously constructed to previous

scenario, except that V points are removed from F .

Figures 1 and 2 illustrate a sample of each class of the unrestricted and restricted designs

previously defined. They were graphically depicted using the mixexp R package. In these graphs,
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simplex vertices represent pure components, edges correspond to binary blends and simplex

interior points contain all three-component systems.

(a) (b) (c)

Figure 1: Samples of Random Design (RD) (a), Random Uniform Designs (RUD) (b) and Vertex-and-
centroid-near-point Design (VD) (c) with 7 design points.

(a) (b) (c)

Figure 2: Samples of Random Restricted Design (RRD) (a), Extreme Vertices Design (EVD) (b) and Semi-
Extreme Vertices Design (SEVD) (d) with 6 design points.
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Supplementary material C

Table 1: Relative D-efficiencies for model (7) under different scenarios (RD, RUD and VD). (∗) indicates
that the obtained result does not depend on a set of candidate points.

No. ingredients 3

No. points Algorithm RD RUD VD

7 GA 1 1 1

KLA 0.6899 0.8148 1

CEA(∗) 1 1 1

14 GA 1 1 1

KLA 0.6865 0.8308 1

CEA(∗) 1 1 1

18 GA 1 1 1

KLA 0.7861 0.8772 0.9139

MA(∗) 1 1 1

CEA(∗) 1 1 1

No. ingredients 5

No. points Algorithm RD RUD VD

25 GA 0.3433 0.8584 1

KLA 0.2403 0.4334 1

CEA(∗) 1 1 1

50 GA 0.5772 0.7611 1

KLA 0.3002 0.5137 0.9978

CEA(∗) 1 1 1
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Table 2: Relative I-efficiencies for second-order model under different scenarios (RD, RUD and VD). (∗)

indicates that the obtained result does not depend on a set of candidate points.

No. ingredients 3

No. points Algorithm RD RUD VD

6 GA 0.9842 0.9887 0.9882

KLA 0.7463 0.9040 0.9881

CEA(∗) 1 1 1

7 GA 0.9606 0.9605 0.9894

KLA 0.8431 0.8814 0.9861

CEA(∗) 0.9953 0.9953 0.9953

8 GA 0.9803 0.9918 0.9644

KLA 0.8208 0.8943 0.9875

CEA(∗) 1 1 1

18 GA 0.9719 0.9696 0.9997

KLA 0.8154 0.9281 0.9978

MA(∗) 1 1 1

CEA(∗) 1 1 1

30 GA 0.9452 0.9945 0.9459

KLA 0.9222 0.9293 0.9981

CEA(∗) 1 1 1

No. ingredients 4

No. points Algorithm RD RUD VD

15 GA 0.8611 0.9604 0.9801

KLA 0.5839 0.7565 0.9543

CEA(∗) 1 1 1

16 GA 0.7468 0.8777 1

KLA 0.5452 0.7591 0.9994

CEA(∗) 1 1 1

17 GA 0.8565 0.8344 1

KLA 0.5820 0.7113 0.9896

CEA(∗) 1 1 1

No. ingredients 5

No. points Algorithm RD RUD VD

15 GA 0.8909 0.8217 1

KLA 0.1590 0.3534 0.5196

CEA(∗) 1 1 1

30 GA 0.7710 0.7857 1

KLA 0.4245 0.7371 0.9252

CEA(∗) 1 1 1
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Supplementary Material E

Table 5: Relative D-efficiencies for model (9) under different scenarios (RRD, SEVD and EVD). (∗) indi-

cates that the obtained result does not depend on a set of candidate points. (⋆) means that the 4-th and 5-th

ingredient were added to the problem without constraints, whereas (⋆⋆) denotes that these were constrained.

No. ingredients 3

No. points Algorithm RRD SEVD EVD

6 GA 1 1 1

KLA 0.8937 0.6406 1

CEA(∗) 1 1 1

12 GA 1 1 1

KLA 0.8112 0.6582 1

CEA(∗) 1 1 1

No. ingredients 5

No. points Algorithm RRD SEVD EVD

15(⋆) GA 1 0.9828 1

KLA 0.5150 0.6008 0.6953

CEA(∗) 1 1 1

15(⋆⋆) GA 1 1 1

KLA 0.5000 0.6250 0.750

CEA(∗) 1 1 1

Table 6: Relative I-efficiencies for I-optimality and model (9) under different scenarios (RRD, SEVD and

EVD). (∗) indicates that the obtained result does not depend on a set of candidate points. (⋆) means that

the 4-th and 5-th ingredient were added to the problem without constraints, whereas (⋆⋆) denotes that these
were constrained.

No. ingredients 3

No. points Algorithm RRD SEVD EVD

12 GA 1 0.9933 0.9935

CEA(∗) 0.6474 0.6474 0.6474

No. ingredients 5

No. points Algorithm RRD SEVD EVD

30(⋆) GA 0.9404 1 0.9407

CEA(∗) 0.4991 0.4991 0.4991

30(⋆⋆) GA 0.8790 0.8931 1

CEA(∗) 0.5207 0.5207 0.5207
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Supplementary Material F

Table 7: Relative D-efficiencies for model (10) under different scenarios (RRD, SEVD and EVD). (∗) indi-
cates that the obtained result does not depend on a set of candidate points.

No. ingredients 4

No. points Algorithm RRD SEVD EVD

14 GA 0.9440 1 0.9120

KLA 0.2590 0.3090 0.4390

CEA(∗) 0.5594 0.5594 0.5594

20 GA 1 0.95 0.85

KLA 0.3100 0.3900 0.48

CEA(∗) 0.5348 0.5348 0.5348

Table 8: Relative I-efficiencies for I-optimality and model (10) under different scenarios (RRD, SEVD and

EVD). (∗) indicates that the obtained result does not depend on a set of candidate points. E denotes the
design obtained by the practitioners.

No. ingredients 4

No. points Algorithm RRD SEVD EVD

20 GA 0.8190 1 0.8863

CEA(∗) 0.5823 0.5823 0.5823

E(∗) 0.0451 0.0451 0.0451
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