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discretely supported p-values with application to a
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Abstract

False discovery rate (FDR) control is important in multiple testing scenarios that are common

in neuroimaging experiments, and p-values from such experiments may often arise from some

discretely supported distribution or may be grouped in some way. Two situations that may lead to

discretely supported distributions are when the p-values arise from Monte Carlo or permutation

tests are used. Grouped p-values may occur when p-values are quantized for storage. In the

neuroimaging context, grouped p-values may occur when data are stored in an integer-encoded

form. We present a method for FDR control that is applicable in cases where only p-values

are available for inference, and when those p-values are discretely supported or grouped. We

assess our method via a comprehensive set of simulation scenarios and find that our method

can outperform commonly used FDR control schemes in various cases. An implementation to a

mouse imaging data set is used as an example to demonstrate the applicability of our approach.
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1 Introduction

Modern experiments in numerous fields of science now output the results of thousands to

millions of hypothesis tests simultaneously. Recent accounts of the theoretical aspects

of the phenomenon of simultaneous statistical inference with applications in the life

sciences can be found in Dickhaus (2014). Further treatment of the topic can be found

in Efron (2010).

We assume that we are operating in a scenario whereupon we (only) observe p-values

from n ∈N simultaneous tests of the hypotheses Hi (i ∈ [n]; [n] = {1, ...,n}), which may

∗ HDN is at the Department of Mathematics and Statistics, La Trobe University, Bundoora 3086, Victoria Aus-
tralia (Corresponding author; email: h.nguyen5@latrobe.edu.au). GJM is at the School of Mathematics and
Physics and Centre for Innovation in Biomedical Imaging Technology, University of Queensland, St. Lucia
4072, Queensland Australia. YY and JPL are at the Mouse Imaging Centre, Hospital for Sick Children, M5T
3H7 Toronto, Ontario Canada.

Received: December 2018

Accepted: April 2019



238 False discovery rate control for grouped or discretely supported p-values...

be either null or otherwise and may be related in some manner. Suppose that we are

conducting well-specified standard significance tests at significance level α ∈ (0,1). If

all of the hypotheses are null, then we can directly compute the expected number of tests

declared significant as nα. Taking n large (e.g. n≥ 106) and α at usual levels such as α∈
(0.001,0.1), the number of incorrectly declared hypotheses as not null can be greatly

inflated. When there is a potential for large numbers of incorrectly rejected hypotheses,

the outcome of using only standard significant tests can lead to spurious conclusions.

In recent years, the leading paradigm for the handling of large-scale simultaneous

hypothesis testing scenarios is via the control of the false discovery rate (FDR) of an ex-

periment. The control of FDR was first introduced by Benjamini and Hochberg (1995)

and has since been developed upon by numerous other authors. The FDR of an ex-

periment can be defined as FDR=E(N01/NR)P(NR > 0), where N01 and NR denote the

number of false positives and the number of rejected hypotheses (hypotheses declared

significantly alternative) from the experiment, respectively.

The FDR control method of Benjamini and Hochberg (1995) was first developed to

only take an input of n IID (identically and independently distributed) p-values. An

extension towards the control of FDR in samples of correlated p-values was derived in

Benjamini and Yekutieli (2001). Since these key publications, there have been numer-

ous articles written on the topic of FDR control in various settings and under various

conditions; see Benjamini (2010) and the comments therein for an account of the his-

tory and development of FDR control.

In most FDR control methods, there is an explicit assumption that the marginal dis-

tribution of the p-values of an experiment is uniform over the unit interval, if the hy-

pothesis under consideration is null. This assumption arises via the classical theory of

p-values of well-specified tests (cf. Dickhaus, 2014, Sect. 2). However, in practice,

there are numerous ways for which the distribution of p-values under the null can de-

viate from uniformity. In Efron (2010, Sect. 6.4), several causes of deviation from

uniformity are suggested. Broadly, these are: failed mathematical assumptions (e.g. in-

correct use of distribution for computing p-values), correlation between p-values, and

unaccounted covariates or misspecification of null hypotheses. A treatment on the ef-

fects of misspecification of the null hypotheses due to unaccounted covariates can be

found in Barreto and Howland (2006, Chap. 7 Appendix and Chap. 18).

There are some FDR methods that account for deviation from uniformity in the null

distribution. These include the methods of Yekutieli and Benjamini (1999), Korn et al.

(2004), Pollard and van der Laan (2004), van der Laan and Hubbard (2006), and Habiger

and Pena (2011). Unfortunately, the listed methods all require access to the original

data of the experiment in order to compute permutation-based test statistics and thus

permutation-based p-values. As mentioned previously, access to the original experi-

mental data lies outside of the scope of this article as we only assume knowledge of the

p-values. The empirical-Bayes (EB) paradigm provides a powerful framework under

which the deviation of the null away from uniformity can be addressed with only access

to the experimental p-values. The EB paradigm for FDR control was first introduced in
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Efron et al. (2001). A relatively complete account of the EB paradigm appears in Efron

(2010).

We largely follow the work of McLachlan, Bean and Ben-Tovim (2006) and Nguyen

et al. (2014). Our novelty and development of the available literature is to present a

methodology for addressing the problems that are introduced when p-values are dis-

tributed on a discrete support or when the p-values are grouped.

As in Nguyen et al. (2014), we particularly focus on the context of neuroimaging

applications. In voxel-based morphometric neuroimaging studies (see, e.g., Ashburner

and Friston, 2000), the number of simultaneously tested hypotheses often range in the

tens of thousands to the tens of millions. Due to such inflated numbers, the risk of mak-

ing false discoveries is often unacceptably high. Making inference without FDR control

in such situations may lead to an overabundance of absurd conclusions. This is well

demonstrated in the infamous results of Bennett et al. (2009), where neuronal activation

in the brain of a dead fish was observed in a functional magnetic resonance imaging

study, where the FDR was not controlled. Thus, FDR control is an important and ongo-

ing area of research in the neuroimaging literature. A classic treatment regarding FDR

control in neuroimaging can be found in Genovese, Lazar and Nichols (2002).

Grouped p-values may arise under incomplete observation; that is, under censoring,

grouping, or quantization observation of p-values; see Turnbull (1976) for working def-

initions of the censored and grouped data and Gersho and Gray (1992) for quantization.

We shall elaborate upon these definitions in the sequel.

Neuroimaging data such as MRI and functional MRI volumes are usually stored via

one of a number of common storage protocols. Incomplete data may arise when data

are compressed using one of these storage algorithms. Some common storage protocols

under which neuroimaging data may be compressed include ANALYZE (Robb et al.,

1989), DICOM Bidgood et al. (1997), MINC (Vincent et al., 2003), and NIFTI Cox et

al., 2004). A good summary of these protocols is presented in Larobina and Murino

(2014). In the pursuit of reduced storage sizes, it is not uncommon for neuroimaging

data volumes to be stored at the minimum precision specification of any of the afore-

mentioned formats. For example, DICOM volumes can only store data as integers, at a

precision level as low as 8-bits (i.e. 28 = 256 unique values). When p-values are stored

in such a format, the true values are grouped into bins that are centered on a discrete

number of possible values on the unit interval.

Discretely supported p-values may arise from Monte Carlo or permutation tests. In

such cases, the p-values for a fixed number of permutations or Monte Carlo replications

R, can only take on R+ 1 discrete value. Furthermore, Monte Carlo and permutation

tests are both random approximations of exact tests. Such tests can again only output

a discrete number of possible p-values that depend on the sample size of the data from

which they are computed (cf. Phipson and Smyth, 2010). Monte Carlo and permuta-

tion tests are frequently used in neuroimaging studies; see, for example, Winkler et al.

(2014).



240 False discovery rate control for grouped or discretely supported p-values...

It is known that grouped observations of real numbers can often lead to inaccura-

cies in statistical computations. Discussions of some aspects regarding the effects of

grouping on statistical computation are discussed in Moschitta, Schoukens and Carbone

(2015). The effects of quantization can particularly be ruinous when applying standard

EB-based FDR control approaches. The effects of incompleteness in the observation

of p-values qualifies as a failure in mathematical assumptions, under the taxonomy of

Efron (2010, Sect. 6.4).

In this article, we address the problem of EB-based FDR control using p-values that

are discretely supported or grouped, via the use of binned estimation. We demonstrate

the effect of grouped p-values on the estimation of the EB model. Making use of the EM

(expectation–maximization of Dempster, Laird and Rubin (1977) algorithm from the

mix function in the mixdist package (MacDonald and Du, 2012) in the R programming

language (R Core Team, 2016), we demonstrate that one can simply and rapidly maxi-

mum marginal likelihood (MML) estimation (cf. Varin, 2008) of the EB model. We fur-

ther prove the consistency of the MML estimator for the EB model. A second numerical

study is conducted to demonstrate the performance of our method under incomplete ob-

servation of p-values, where a comparison between our method is made against the com-

monly used methods of Benjamini and Hochberg (1995) and Benjamini and Yekutieli

(2001), and Storey (2002). An example application to a mouse brain imaging dataset is

then provided to demonstrate the usefulness of our approach in a real data scenario.

The article proceeds as follows. In Section 2, we introduce concepts relating to

grouped and discretely observed p-values, and the EB model for p-values. We then

demonstrate how the EB model can be used for FDR control. In Section 3, we present

a demonstration of the effect of grouped p-values on the naive estimation of the EB

model. In Section 4, a numerical study of the performance of our method is presented.

In Section 5, the methodology is applied to control the FDR of a mouse imaging data

set. Conclusions are drawn in Section 6. Further details regarding our methodology are

included in the Supplementary Materials.

2 Binned estimation of the empirical Bayes model for grouped

or discretely supported p-values

Let 0 = a0 < a1 < · · ·< am−1 < am = 1 be a set of m points along the line segment [0,1].

Suppose that we observe n p-values Pi ∈ [0,1], for i ∈ [n]. Grouping may occur when

P1, . . . ,Pn are subject to rounding (or quantization), such that each p-value to the nearest

point a j, for j ∈ [m]∪{0}, where various measurements of closeness may be used for

different applications. Observation of P1, . . . ,Pn may also be grouped when they are

censored. That is, when we only observe the fact that each p-value Pi ∈ (a j−1,a j), for

some j ∈ [n], and not its precise value. Under either quantization or censoring, the

p-values Pi are each mapped to a discrete set of values, either the m+ 1 quantization
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centers a j or the m intervals (a j−1,a j), enumerated by the index j. In the case where

P1, . . . ,Pn arise from a Monte Carlo or permutation tests, we may envisage that they are

quantized approximations of p-values that arise from an asymptotically large population

size and thus can be treated in the same manner as quantized p-values in practice.

2.1 The empirical Bayes model

For i ∈ [n], let Zi = Φ−1 (1−Pi) be the probit transformation of Pi. We refer to Zi as

the z-scores. Here Φ is the cumulative distribution function of the standard normal

distribution. Under the EB paradigm, we assume that some proportion π0 ∈ [0,1] of the

n hypotheses are null and thus π1 = 1−π0 are otherwise. Since an alternative (not null)

hypothesis generates a p-value that is on average smaller than that of a null hypothesis,

we can also assume that the z-scores of null hypotheses arise from some distribution with

a mean µ0 ∈R, where µ0 < µ1 and µ1 ∈R is the mean of the alternative z-scores. Under

uniformity of the p-values, the z-scores have a standard normal distribution, we can

approximate the density of the null z-scores by f0 (z) = φ
(

z;µ0,σ
2
0

)

, where σ2
0 > 0 and

φ
(

·;µ,σ2
)

is the normal density function with mean µ and variance σ2. Likewise, we

can approximate the density of the alternative z-scores by f1 (z) = φ
(

z;µ1,σ
2
1

)

, where

σ2
1 > 0 (cf. Efron, 2004). The marginal density of any z-score, can be approximated by

the two-component mixture model

f (z;θθθ) = π0 f0 (z)+π1 f1 (z) , (1)

where θθθ⊤ =
(

π0,µ0,σ
2
0 ,µ1,σ

2
1

)

is the model parameter vector and (·)⊤ is the transpose

operator. We say that (1) is the EB model for p-values.

2.2 Statistical model for binned data

Let −∞ = b0 < b1 < b2 < ... < bm−1 < ∞ for some m ∈ N\{1}. We define m bins

B j, for j ∈ [m], where B j = (b j−1,b j] for j ∈ [m−1] and Bm = (bm−1,∞) . Suppose

that we observe n p-values Pi that are converted to z-scores Zi, which may be infinite

in value. Further, define I(A) as the indicator variable that takes value 1 if proposition

A is true and 0 otherwise, and define a new random variable X⊤
i = (Xi1, ...,Xim), where

Xi j = I(Zi ∈ B j), for each i and j ∈ [m].

Suppose that the n p-values generate z-scores that are potentially correlated and

marginally arise from a mixture model of form (1), with θθθ = θθθ0, for some valid θθθ0.

Using the bins and realizations x⊤i = (xi1, ...,xim) of each Xi (i ∈ [n]), we can write the

marginal likelihood and log-marginal likelihood functions under the mixture model ap-

proximation for the z-scores as

L(θθθ) =
n

∏
i=1

m

∏
j=1

[

∫

B j

f (z;θθθ)dz

]xi j
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and

l (θθθ) =
n

∑

i=1

m
∑

j=1

xi j log

∫

B j

f (z;θθθ)dz. (2)

Write the MML estimator for θθθ0 that is obtained from n z-scores as θ̂θθn. We can define

θ̂θθn as a suitable root of the score equation ∇l = 0, where ∇ is the gradient operator and

0 is the zero vector.

The marginal likelihood function is simply an approximation to the likelihood that

is constructed under an assumption of independence between the observations Xi (cf.

Varin, 2008). In light of not knowing what the true dependence structure between the

observations is, the marginal likelihood function can be seen as a quasi-likelihood con-

struction in sense of White (1982). The purpose of a quasi-likelihood construction is to

make use of an approximation that is close enough to the true data generative process so

that meaningful inference can be drawn. Here its use is to avoid the need to declare an

explicit model for potential correlation structures between the observations.

The EM algorithm for MML estimation is the context of this article is provided

in Supplementary Materials Section 1. The consistency of the MML estimator is also

established in the same section.

2.3 Empirical Bayes-based FDR control

Upon estimation of the parameter vector θθθ0
via the MML estimator θ̂θθn, we can follow the

approach of McLachlan et al. (2006) in order to implement EB-based FDR control of the

experiment. That is, consider the event {Hi is null |Zi = zi}, for each i ∈ [n]. Via Bayes’

rule and the MML estimator θ̂θθn, we can estimate the probability of the aforementioned

event via the expression

P̂(Hi is null |Zi = zi) =
π̂0φ

(

zi; µ̂0, σ̂
2
0

)

f

(

zi; θ̂θθn

) = τ
(

zi; θ̂θθ
)

. (3)

Using (3), we can then define the rejection rule

r

(

zi; θ̂θθn,c
)

=

{

1, if τ
(

zi; θ̂θθn

)

≤ c

0, otherwise,

where c ∈ [0,1]. Here r

(

zi; θ̂θθn,c
)

= 1 if the null hypothesis of Hi is rejected (i.e. Hi is

declared significant) and 0 otherwise.
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Let the marginal FDR be defined as mFDR=EN01/ENR. We can estimate the mFDR

of an experiment via the expression

m̂FDR =

∑n
i=1 τ

(

zi; θ̂θθn

)

I

(

r
(

zi; θ̂θθn,c
)

= 1
)

∑n
i=1 I

(

r

(

zi; θ̂θθn,c
)

= 1
) , (4)

which we can prove to converge to the mFDR in probability, under M-dependence (cf.

Nguyen et al., 2014, Thm. 1). Subsequently, we can also demonstrate that for large n,

the mFDR approaches the FDR (cf. Nguyen et al., 2014, Thm. 2).

Notice that mFDR = mFDR(c) is a function of the threshold c. Using the threshold-

ing value, we can approximately control the FDR at any desired level β by setting the

threshold c using the rule

cβ = argmax
{

c ∈ [0,1] : m̂FDR(c)≤ β
}

. (5)

2.4 Choosing the binning scheme

Thus far in discussing the binned estimation of the z-score distribution f , we have as-

sumed that the bin cutoffs b1, ...,bm−1 are predetermined. When the p-values are cen-

sored into intervals (a j−1,a j), for j ∈ [m]∪ {0}, as describe at the beginning of the

section, we may take the values a j to inform our bin cutoffs b1, . . . ,bm−1. This can be

done by computing the probit transformation of each of the cutoffs. That is, we can set

b0 = −∞, b1 = Φ−1 (1−am−1), b2 = Φ−1 (1−am−2) , . . . ,bm−1 = Φ−1 (1−a1). Thus

the bin cutoffs are implicitly given by the censoring and thus the problem does not re-

quire the user to make a choice regarding the binning scheme, similar to the situation

originally encountered in McLachlan and Jones (1988).

When the p-values are quantized or when they are discretely distributed, we must

make a non-trivial decision regarding the binning scheme to use. A simple approach

to the choice of binning scheme is to use the techniques underlying optimal histogram

smoothing on the finite z-scores. In R, there are several optimal histogram smoothing

techniques that are deployed in the default hist function. These include the fixed bin

width methods of Sturges (1926), Scott (1979), and Freedman and Diaconis (1981).

Under the methods of Sturges (1926), Scott (1979), and Freedman and Diaconis

(1981), the number of bins is taken to be m = ⌈log2 n⌉+1,

m = ⌈(Range/h)⌉ with h = 2× IQR/n1/3,

and

m = ⌈(Range/h)⌉ with h = 3.5× s/n1/3,
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respectively. Here, ⌈·⌉ is the ceiling operator, and Range, IQR, and s are the sample

range, interquartile range, and standard deviation, respectively. We compare the effec-

tiveness of each of the binning approaches in the next section.

The binning of data, or the approximation of density functions via histograms, is a

nontrivial problem that extends beyond the scope of this article. There is an abundance

of methods for data binning that are available within the statistical and machine learning

literature. Any of such methods can be used in place of the ones that we have sug-

gested. For example, see the papers of Wand (1997) and Birge and Rozenholc (2006)

regarding alternative fixed bin width methods. Examples of variable bin width methods

can be found in the works of Kontkanen and Myllymaki (2007) and Denby and Mallows

(2009). Further approaches can be found within the references of the cited articles.

3 An integer encoding example

To demonstrate the effects of grouping on p-values, we use the effects of integer encod-

ing of such values as an example. Table 1 of Larobina and Murino (2014) provides a

summary of the possible data compression schemes that can be applied when storing

data in the ANALYZE, DICOM, MINC, or NIFTI formats. The possible integer storage

schemes available for ANALYZE are 8-bits unsigned, or 16 and 32-bits signed. For

DICOM, the available schemes are 8, 16, and 32-bits signed or unsigned. For MINC, 8,

16, and 32-bits signed or unsigned, are available. Finally, NIFTI can store data as 8, 16,

32, or 64-bits signed or unsigned.

For reference, 8, 16, 32, and 64 binary bits unsigned can encode 256, 65536, 429496

7296, and 1.84E+19 (aEb = a× 10b) unique values, respectively. These numbers are

doubled when signed encodings are used. In this article, we only consider integer com-

pression in 8-bits or 16-bits signed and unsigned formats. This is because 32-bits and

64-bits can be used to encode single and double-precision floating points, respectively,

which largely mitigate against the reduced precision problems that we discuss in this

article.

3.1 Integer encoding of p-values

As noted earlier, we are largely concerned with large scale-hypothesis testing situations

that arise from voxel-based experiments (cf. Ashburner and Friston, 2000). In such

experiments, a hypothesis test is conducted at each voxel of an imaged volume. For

statistical analyses, resulting volumes of p-values are generated. It is these volumes that

are then stored, possibly in a reduced precision format, for dissemination or for storage.

Suppose that a γ-bits unsigned integer encoding is used, where γ ∈ N. Note that a

γ-bits signed integer encoding is effectively equivalent to a (γ+1) -bits unsigned, for all

intents and purposes. When the hypothesis testing data are stored as a p-value volume,

we suppose that the data are stored such that the smallest integer value encodes the
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number zero and the largest integer value encodes the number one. The remainder of

the integers are used to encode the unit interval at equally-spaced points. The encoding

process then rounds the original p-values towards the nearest of these equally-spaced

points. We refer to this approach as a γ-bits encoding. Under the storage protocols

that we assess, γ ∈ {8,9,16,17} generate valid encodings. We note that our considered

encoding scheme is only a simplified method of quantization. More complex encoding

schemes are possible, such as those considered in Perlmutter et al. (1998).

3.2 The effect of integer encoding on the null distribution

Let n = 106, and for each i ∈ [n], let Hi be a null hypothesis that is tested using a well-

specified test resulting in a p-value Pi arising from a uniform distribution over the unit

interval (cf. Dickhaus, 2014, Chap. 2). We simulate and encode the n p-values using

γ-bits encodings, for all valid values of γ. The respective z-scores from each encoding

scenario are computed, and the parameter elements of f0 (z) = φ
(

z;µ0,σ
2
0

)

are then

estimated via ML estimation.

Here, we naively omit infinite z-scores. The process is repeated 100 times for each

encoding rule. We also estimate the parameter elements of f0 (z) for n = 106 z-scores

that are obtained without encoding in order to provide a benchmark. All computations

are conducted in R.

Figure 1 visualizes the results from the numerical study that is set up above. In the

figure and elsewhere, we denote the estimate/estimator of any quantity θ as θ̂.
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None 8−bits 9−bits 16−bits 17−bits
Encoding

M
e
a
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(a) Mean and standard errors from 100 ML

estimates µ̂0 of µ0 = 0.
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(b) Mean and standard errors from 100 ML

estimates σ̂2
0 of σ2

0 = 1.

Figure 1: Monte Carlo study regarding the estimation of µ0 = 0 and σ2
0 = 1, in the presence of integer

encodings of p-values. Means are represented by points and standard errors are equal to half the length of

the error bars.

Theoretically, we would anticipate that there is no deviation away from a standard

normal distribution when no encoding is introduced. This is exactly what we observe

in Figure 1(a), where neither the average of the mean nor variance estimates are out-

side of a 95% confidence interval (i.e., approximately Mean± 2×SE, where SE is the
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standard error). In fact, only two encoding schemes (8 and 9-bits encodings) resulted in

significant differences of any kind, from the anticipated estimated values. Further notes

regarding the interpretation of Figure 1 appears in Section 2.1 of the Supplementary

Materials.

3.3 The effect on the z-score distribution

Now suppose that the hypotheses Hi are generated from two populations, a null one with

probability π0 = 0.8, and an alternative one with probability π1 = 0.2. Under the null

hypothesis, we generate test statistics Ti from a standard normal distribution, and under

the alternative, we generate test statistics from a normal distribution with mean µ1 = 2

and variance σ2
1 = 1, instead. The p-values Pi = 1−Φ(Ti), for testing the null that the

test statistics are standard normal, are also computed. Again, we let n = 106.

Encoding of the p-values is again conducted under the protocol that are described in

Section 3.1. We then compute z-scores and discard any infinite values. The parameter

vector θθθ is then estimated via ML estimation. The process is again repeated 100 times

for each encoding type. ML estimation is conducted via the usual EM algorithm for

finite mixtures of normal distributions via the normalmixEM2comp function from the

packagemixtools (Benaglia et al., 2009). The result of this numerical study is visualized

in Figure 1 of the Supplementary Materials.

The estimated parameter elements were uniformly significantly different from the

generative values for the model. As γ increases, we observe that the estimated values

appear to approach the nominal parameter values. However, this approach appears to be

slow and still leads to significantly incorrect estimates, even for the largest considered

γ. A quantification of this incorrectness appears in Section 2.2 of the Supplementary

Materials.

4 Assessment of the binned estimator

4.1 Accuracy of z-score distribution

We first repeat the experiment from Section 3.3, except instead of ML estimation via

the normalmixEM2comp function from the package mixtools, we conduct MML esti-

mation via the mix function from the package mixdist. The results from the experiment,

using binning schemes obtained via the histogram binning techniques of Sturges (1926),

Scott (1979), and Freedman and Diaconis (1981) are visualized in Figure 2 of the Sup-

plementary Materials. Interpretation of appears in Section 3.1 of the Supplementary

Materials.

We note that there is only one set of plots where we do not observe the uniform ac-

curacy of the MML estimator, across the binning schemes that are applied. Under 8-bits

encoding, we observe that only the Sturges-binned MML estimator yielded accurate es-
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timates of the generative parameter elements. Both the Freedman-Diaconis (FD) and

Scott-binned estimators resulted in significantly inaccurate estimates of the null propor-

tion and alternative mean and variance parameters. We note that the Sturges binning

leads to faster EM algorithm runtimes due to the fact that fewer numerical integrals are

required in the E-step, as described in Section 1.1 of the Supplementary Materials. Since

we do not observe any benefits from using FD or Scott-type binning in cases where all

three methods yielded accurate estimates, we shall henceforth only consider the use of

Sturges bins.

4.2 FDR control experiment

We perform a set of five numerical simulation scenarios, in order to assess the perfor-

mance of the EB-based FDR control rule that is described in Section 2.3. These studies

are denoted S1–S5, and will be described in the sequel.

In each of the scenarios, we generate n= 106 test statistics T1, . . . ,Tn, with proportion

π0 = 0.8 that Hi is null (i ∈ [n]). The generative distribution of Ti given Hi is null

or alternative differs by the simulation study. However, under each studied scenario,

the null hypothesis is assumed to be that Ti is standard normal, and thus p-values are

computed as Pi = 1−Φ(Ti).
The p-values P1, . . . ,Pn then undergo the various valid encodings that were previously

considered. The EB-based FDR control method is then used to decide which of the

hypotheses Hi are significant, at the FDR control level β ∈ {0.05,0.10}, based only

on the encoded p-values. We compute the false discovery proportion (FDP) and true

positive proportion (TPP) from the experiment as measures of performance of FDR

control and testing power. The measures FDP and TPP are defined as FDP=N01/NR and

TPP = N11/N1, where N11 is the number of false positives, NR is the number of rejected

hypotheses (declared significantly alternative), N11, is the number of true positives, and

N1 is the number of alternative hypotheses from the simulated experiment. For each

simulation scenario, the experiment is repeated Reps = 100 times and the performance

measurements are averaged over the repetitions.

For comparison, we also perform FDR control using the popular methods of Ben-

jamini and Hochberg (1995) and Benjamini and Yekutieli (2001), which we denote as

BH and BY, respectively. We also compare our EB-based FDR control to the EB-related

FDR control technique of Storey (2002), which is commonly referred to as q-values. We

implement the BH and BY methods via the base R p.adjust function. The q-values tech-

nique is implemented via the qvalue package (Storey et al., 2015). Scripts for conduct-

ing studies S1–S5 are available at https://github.com/hiendn/FDR_for_grouped_P_values .

4.3 Simulation scenarios

In Scenario S1, we independently generate Ti from a standard normal distribution, given

that Hi is null, and from a normal distribution with mean 2 and variance 1, otherwise.

https://github.com/hiendn/FDR_for_grouped_P_values
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This scenario is identical to that which is studied Section 3.3.

Table 1: Average FDP and TPP results (Reps = 100) for Scenario S5. The best outcome under each

encoding for each value of β is highlighted in boldface. Here, the best FDP proportion is one that is closest

to the nominal value without exceeding it and the best TPP value is highest value given that the FDP does

not exceed the nominal value. FDP values that exceed the nominal value are emphasized in italics.

FDP TPP

Encoding Method β = 0.05 β = 0.10 β = 0.05 β = 0.10

None EB 4.35E-02 6.15E-02 1.02E-01 1.85E-01

BH 6.10E-02 9.62E-02 1.82E-01 3.20E-01

BY 2.48E-02 2.80E-02 1.51E-02 3.09E-02

q-values 7.14E-02 1.16E-01 2.26E-01 3.85E-01

8-bits EB 1.03E-01 1.03E-01 3.46E-01 3.46E-01

BH 1.56E-01 2.45E-01 4.93E-01 6.58E-01

BY 1.03E-01 1.03E-01 3.46E-01 3.46E-01

q-values 3.65E-01 5.62E-01 8.00E-01 9.33E-01

9-bits EB 8.23E-02 8.23E-02 2.70E-01 2.70E-01

BH 1.66E-01 2.50E-01 5.15E-01 6.66E-01

BY 8.23E-02 8.23E-02 2.70E-01 2.70E-01

q-values 3.63E-01 5.59E-01 7.97E-01 9.32E-01

16-bits EB 3.97E-02 5.67E-02 8.55E-02 1.62E-01

BH 1.55E-01 2.43E-01 4.92E-01 6.56E-01

BY 4.45E-02 5.86E-02 1.06E-01 1.72E-01

q-values 3.61E-01 5.60E-01 7.97E-01 9.33E-01

17-bits EB 4.12E-02 5.73E-02 8.53E-02 1.63E-01

BH 1.54E-01 2.42E-01 4.90E-01 6.55E-01

BY 4.48E-02 5.88E-02 1.03E-01 1.70E-01

q-values 3.60E-01 5.58E-01 7.95E-01 9.32E-01

We consider hypothesis tests that generate dependent test statistics in Scenarios S2

and S3. In S2 two first-order autoregressive sequences of n observations are generated.

The null sequence is generated with mean coefficient 0, autoregressive coefficient 0.5,

and normal errors with variances scaled so that the overall variance of the sequence is

1. The second chain is the same, except that the mean coefficient is 2 instead of zero. If

Hi is null, then Ti is drawn from the first chain; otherwise Ti is drawn from the second

chain. See Amemiya (1985, Sect. 5.2) regarding autoregressive models. Scenario S3 is

exactly the same as Scenario S2, except that the autoregressive coefficient is set to −0.5
instead of 0.5.

In Scenario S4, we independently generate Ti from a normal distribution with mean

0.5 and variance 1, given that Hi is null, and from a normal distribution with mean 2.5

and variance 1, otherwise. This scenario is misspecified in the sense that the p-values Pi

are not computed under the correct null hypothesis. Thus, the distribution of the Pi will

not be uniform and thus the well-specified testing assumption of BH, BY, and q-values

is not met.
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Lastly, in Scenario S5, we independently generate Ti from a Student t-distribution

with mean 0.5 and variance 1 and degrees of freedom 25, given that Hi, and from a Stu-

dent t-distribution with mean 2.5 and variance 1 and degrees of freedom 25, otherwise.

Justifications regarding the choices for the five scenarios appear in Section 3.2 of the

Supplementary Materials.

4.4 Results

The results for Scenarios S1–S5 are reported in Tables 1–5 of the Supplementary Mate-

rials, respectively. We provide the results for S5 in the main text, as it can be viewed as

the scenario that is most difficult and is thus most interest.

From Table 1, we observe that q-values is anti-conservative uniformly over all encod-

ing types and FDR control levels in Scenario S5. Furthermore, BH was also uniformly

anti-conservative when used to control the FDR at β = 0.05. The BH method also

yielded anti-conservative control of the FDR at β = 0.10, when the data were encoded

using p-type encodings. Both EB and BY were equally anti-conservative for control of

FDR at β = 0.05, when the data were encoded using 8-bits or 9-bits encodings. How-

ever, the control at the β = 0.10 level from both methods for the two aforementioned

encoding schemes were both equal and approximately at the correct rate. For all other

encoding types, both EB and BY correctly controlled the FDR, for both levels of β. BY

appeared more powerful than EB although by only a small amount.

The results above demonstrate that EB along with BY were somewhat more robust

to misspecification and data compression via integer encoding than the two other tested

methods. Thus, as we had anticipated, there was an observable practical effect to FDR

mitigation via conventional methods when p-value data were observed on a discrete

support. However, our EB method, and to an extent, the BY method, were able to

mitigate against the negative effects of discretization induced by censoring, grouping,

and truncation, and thus should be preferred over the other assessed methods in such

settings.

For a discussion of results regarding Scenarios S1–S4, we direct the reader to Sec-

tion 4.4 of the Supplementary Materials. From the results of Scenarios S1–S5, we can

conclude that the EB method can correctly control the FDR when the tests were well-

specified, and are also somewhat robust to misspecification, otherwise.

5 Example application

5.1 Description of data

Correlations between the structural properties of brain regions, as measured over a sam-

ple of subjects, are being increasingly studied as a means of understanding neurological
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development (Li et al., 2013) and diseases (Seeley et al., 2009, Wheeler and Voineskos,

2014, Sharda et al., 2016). These correlation patterns, which are often referred to as

structural covariance in the neuroimaging literature, are widely studied in humans (Ale-

xander-Bloch, Giedd and Bullmore, 2013, Evans, 2013), as well as in animal models

such as mice (Pagani, Bifone and Gozzi, 2016).

For our example application, we study neurological magnetic resonance imaging

(MRI) data from a sample of 241 mice. The MRI sample of both female and male adult

mice were obtained by taking the control data from a phenotyping study (Ellegood et al.,

2015) in order to create a representative wildtype population with variability. All mice

were scanned ex-vivo after perfusion with a gadolinium-based contrast agent, and all

images were obtained at the same location (i.e. the Mouse Imaging Centre). Scanning

was performed on a Varian 7T small animal MR scanner that was adapted for multiple

mouse imaging.

The preparation and image acquisition followed a standard pipeline that is similar to

the one described in Lerch, Sled and Henkelman (2010). Specifically, a T2-weighted

fast-spin echo sequence was used to produce whole-brain images that have an isotropic

resolution of 56 micrometers. After images were acquired, the data were corrected for

distortions and then registered together by deformation towards a common nonlinear

average. The registration pipeline included corrections for nonuniformities that were

induced by radio frequency inhomogeneities or gradient-related eddy currents (Sled,

Zijdenbos and Evans, 1998). The registered images had a volume of x× y× z = 225×

320× 152 voxels, of which n = 2818191 voxels corresponded to neurological matter.

The exported data were stored in the MINC format.

As an output, the registration process produces a set of Jacobian determinants that

provide a measure of the extent in which a voxel from the average brain must expand

or contract in order to match each of the individual brains of the sample. The Jacobian

determinants field of each sample individual is thus a measure of local volume change.

For further processing, the Jacobian determinants are log-transformed in order to reduce

skewness.

5.2 Hypothesis testing

Upon attainment of the sample of 241 Jacobian determinant fields from the registered

mice brain MRIs, we can assess whether or not the local volume change at any particular

voxel is correlated with some region of interest. To do so, we select a “seed” voxel

within the region of interest and compute the voxelwise sample (Pearson) correlation

between the log-transformed Jacobian determinant of the seed voxel and those at every

other voxel in the sample of MRIs. This correlation measure can then be used as a

measure of structural covariance of the region of interest and the rest of the brain. In

the past, structural covariance methods have been used to draw inference regarding a

broad array of phenomena such as cortical thickness (Lerch et al., 2006), and cortical

maturation and development (Raznahan et al., 2011).
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Thus at each of the n= 2818191 voxels we computed a correlation coefficient. Using

the correlation coefficients, we conducted voxelwise tests of the null hypothesis that the

true correlation between the log-transformed Jacobian determinants of the seed voxel

and voxel i ∈ [n] is zero versus the two-sided alternative. The p-values of each test were

computed using the Fisher z-transformation and normal approximation (Fisher, 1921).

Using the seed voxel at spatial location (x,y,z) = (125,124,64) – within the bed

nucleus of the stria terminalis – we conducted the hypothesis tests, as described above.

Histograms of the p-values and log-squared correlation coefficients can be found in Fig-

ure 2. We note that the histogram of the log-squared correlation coefficients omits 35856

voxels that had zero correlation with the seed voxel. Further note that a correlation of

one yields a log-squared coefficient of ≈−0.69.
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(b) Histogram of log-squared correlation coefficients.

Figure 2: Histograms of p-values and log-squared correlation coefficients for the structural covariance

experiment with seed voxel (x,y,z) = (125,124,64) are presented in subplots (a) and (b), respectively.

An inspection of Figure 2 reveals that the p-value distribution from the experiment

deviates significantly from a uniform distribution. The magnitude of the deviation indi-

cates that there may be a potentially large number of voxels that are strongly correlated

with the seed voxel, and thus with the region of interest that the seed voxel represents.

Using FDR control, we can attempt to identify these correlated voxels in a manner that

limits the potential number of false discoveries that are made.

Using the unique function in R, we observed that there were only 66249 discrete and

unique numerical values that made up the sample of p-values. These discrete values in-

clude zero and one, making up 311575 and 6 voxels of the p-value sample, respectively.

Our observations indicate that the data were censored and grouped, at some stage in

processing pipeline. It is difficult to tell how such incompleteness were induced, since

there may have been multiple encodings of the data along the pipeline that has resulted

in the final reported outputs. As such, from our earlier discussions, it would be prudent

to apply our EB-based FDR control methodology, since it explicitly accounts for the

encoded nature of the data. Furthermore, due to the mathematical approximation via the



252 False discovery rate control for grouped or discretely supported p-values...

use of the Fisher z-transformation as well as the omission of other variables that may

contribute to the analysis such as covariates describing the mice (e.g. gender and model

strain), the null hypothesis that the population correlation is equal to zero is likely to be

misspecified. From Section 4.3, we have observed that the EB-based method is effective

in such a setting.

5.3 FDR control

We firstly transform the p-values pi to the z-scores pi = Φ−1 (1− pi), for each i ∈ [n]. A

histogram of the z-scores that is obtained is presented in Figure 3. We note that the z-

scores that are obtained from the 311581 with p-values equal to zero or one are omitted

in this plot. There is a clear truncation of the histogram at the z-score value of 4.169

which corresponds to the smallest non-zero p-value of 1.53E-05.

Using the methods from Section 2, we fit the EB mixture model and obtain the

parameter vector

θ̂θθ
⊤
=

(

π̂0, µ̂0, σ̂
2
0 , µ̂1, σ̂

2
1

)

=
(

0.5035,0.5141,1.2002,2.9568,1.7852
)

, (6)

which corresponds to the mixture model,

f
(

z; θ̂θθ
)

= 0.5035×φ
(

z;0.5141,1.2002
)

+0.4965×φ
(

z;2.9568,1.7852
)

. (7)
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Figure 3: The functions f
(

·; θ̂θθ
)

, π̂0 f̂0, and π̂1 f̂1 are plotted with solid, dashed, and dotted lines, respec-

tively.
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As in Sect. 4, we use the Sturges binning scheme that was previously described in

Section 2.4. Let f̂0 (z) = φ
(

z;0.5141,1.2002
)

and f̂1 (z) = φ
(

z;2.9568,1.7852
)

be the

estimates of f0 and f1, respectively. We visualize f

(

·; θ̂θθ
)

, π̂0 f̂0, and π̂1 f̂1 together in

Figure 3. A discussion regarding the goodness-of-fit of (7) is provided in Section 4.1 of

the Supplementary Materials.

Upon inspection of Figure 3, we observe that mixture model (7) provides a good

fit to the suggested curvature of the histogram. The estimated parameter vector from

(6) indicates that the null distribution is significantly shifted to the right. This may

be due to a combination of the effects of encoding and the effects of mathematical

misspecification of the test and omission of covariates. We further observe that there

is a large proportion (almost 50%) of potentially alternative hypotheses. Given such a

high number, there is potentially for numerous false positives if we were to reject the

null using the p-value (or z-score) alone. Thus, we require FDR control in order to make

more careful inference.

Using Eqs (4) and (5), we controlled the estimated mFDR at the β = 0.1 level by set-

ting the threshold c0.1 = 0.09986. This resulted in 608685 of the voxels being declared

significantly correlated with the seed, under FDR control, which equates to 21.60%.

For comparison, using BH, BY, and q-values to control the FDR at the same β =
0.1 level, we obtain 1314429, 727102, and 1718143 significant voxels, respectively.

Correspondingly, these numbers respectively translate to 46.64%, 25.80%, and 60.97%

of the total number of hypotheses tested. Given the similarity of this testing scenario

to simulation study S4, we can expect that the BH and q-values methods are grossly

anti-conservative in their control and are would therefore would yield a greater FDR

level than that which is desired. We observe, as in our simulations, that our method and

BY tend to result in similar numbers of rejections. Whether one method or the other is

overly conservative or anti-conservative in this case cannot be deduced without further

assessment of the true significance of the rejected hypotheses.

Figure 4 displays visualizations of the significant voxels using our EB method at the

perpendicular cross-sections intersecting the seed point (x,y,z) = (125,124,64). Upon

inspection of Figure 4 we observe that significant correlation with the seed vector ap-

pears to be exhibited across the brain. The displays A2 and A3 in Figure 4 further show

that the correlation appears to be symmetric between the two hemispheres. Furthermore,

the correlation patterns appear in contiguous and smooth regions.

The observations of whole-brain correlation with the bed nucleus of the stria termi-

nalis are well supported in the literature. For example, similar connectivity observations

were made by Dong et al. (2001) and Dong and Swanson (2006) in mouse studies, and

by McMenamin and Pessoa (2015) and Torrisi et al. (2015) in human studies.
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Figure 4: A1 and B1 display the anatomic background MRI intensities and p-values for the x = 125 slice,

respectively. Similarly A2 and B2 display the respective quantities for the y = 124 slice, and A3 and B3

display the respective quantities for the z = 64 slice. In A1–A3, red voxels indicate those that are significant

when controlled at the β = 0.1 FDR level.
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6 Conclusions

We have presented an EB-based FDR control method for the mitigation of false positive

results in multiple simultaneous hypothesis testing scenarios where only p-values are

available from the hypothesis tests, and when these p-values are distributed on a discrete

support. Due to the nature of the construction of our method, it is robust to situations

where the hypothesis tests are also misspecified or when there may be omitted covariates

that have not been included in the testing procedures for regression models.

In order to handle the discretization induced by censoring, grouping, or quantization

of p-value data, we utilized a finite mixture model that can be estimated from binned

data. We proved that the parameter vector of the mixture model can also be estimated

consistently, even when the testing data may be correlated. A simulation study was used

to demonstrate that our methodology was competitive with some popular methods in

well-specified testing scenarios, and outperformed these methods when the testing data

arise from misspecified tests.

Finally a brain imaging study of mice was conducted to demonstrate our methodol-

ogy in practice. The study constituted a whole-brain voxel-based study of connectivity

to the bed nucleus of the stria terminalis, consisting of n = 2818191 tests. The p-values

for the study were obtained from a complex pipeline that resulted in a set of quantized

values, which included zeros and ones. Furthermore, the p-values were correlated (due

to the spatial nature of imaging and subsequent processing) and the hypothesis tests

were conducted under mathematical assumptions that may have lead to misspecifica-

tion. As such, the use of our methodology was most suitable for the study. As a result

of the study, we found whole-brain correlation patterns that were consistent with those

found in the literature.

Conducting FDR control when p-values are distributed on a discrete support, such

as when the values are incompletely observed or when tests are conducted via Monte

Carlo or permutation schemes, is an interesting inferential problem and requires care-

ful attention. Our developed methodology provides a simple and robust solution when

performing inference with such p-value data.
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