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Modifed almost unbiased two-parameter 
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Abstract  

Due to the large amount of accidents negatively affecting the wellbeing of the sur-
vivors and their families, a substantial amount of research is conducted to determine 
the causes of road accidents. This type of data come in the form of non-negative inte-
gers and may be modelled using the Poisson regression model. Unfortunately, the com-
monly used maximum likelihood estimator is unstable when the explanatory variables of 
the Poisson regression model are highly correlated. Therefore, this paper proposes a 
new almost unbiased estimator which reduces the instability of the maximum likelihood 
estimator and at the same time produce smaller mean squared error. We study the sta-
tistical properties of the proposed estimator and a simulation study has been conducted 
to compare the performance of the estimators in the smaller mean squared error sense. 
Finally, Swedish traffc fatality data are analyzed to show the beneft of the proposed 
method. 
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1.  Introduction  

According to the World Health Organization (2015), fatalities caused by motor vehicle 
collisions leads to more than 1.2 million deaths worldwide. This large amount of acci-
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dents negatively affects the wellbeing of the survivors and their families (Donaldson, 
Brooke and Faux, 2009). Therefore a great interest exists in developing new models and 
methods to estimate the causes of accidents. Examples of previous research where new 
methods are suggested have appeared in Ivan, Wang and Bernardo (2000), Lyon et al. 
(2003), Lord, Manar and Vizioli (2005b), Chiou and Fu (2013) and Shi, Abdel-Aty and 
Lee (2016) among others. This paper is motivated by the work of Shi et al. (2016) and 
focuses on the issue of multicollinearity which is defned as the situation when two or 
more explanatory variables are highly correlated. 

The problem of multicollinearity has signifcant impact on the performance of ordi-
nary least squares (OLS) estimation of unknown regression coeffcients. Furthermore, it 
leads to instability and a high variance of the parameters estimated by OLS and eventu-
ally provides the wrong sign of the regression coeffcients. Another consequence of mul-
ticollinearity is the wider confdence interval, decreased statistical power which result in 
increased probability of type II error in hypothesis testing in terms of the parameters. As 
a solution to this problem for linear regression models, Hoerl and Kennard (1970a, 1970b) 
proposed the ridge regression (RR) method, which is a biased or shrinkage estimator, as 
an alternative to ordinary least squares. They showed that one may reduce the variance 
of the estimated coeffcients substantially by introducing a small amount of bias. This 
method was generalized in order to be used for models estimated by maximum likeli-
hood estimator (MLE) such as the logit and Poisson models by Schaefer, Roi and Wolfe 
(1984) and M˚ ansson and Shukur ansson and Shukur (2011), among others. Kibria, M˚ 
(2015) proposed several estimators for estimating the ridge parameter k based on Poisson 
ridge regression (PRR) model. Liu (1993) by taking the advantage of ridge regression 
and Stein estimator (1956), proposed a new biased estimator and showed its merit for the 
linear regression model. The ridge (Hoerl and Kennard, 1970a), Liu (1993) and Liu-type 
estimators have been developed for other generalized linear models such as negative bi-
nomial regression, Poisson regression, zero infated Poisson regression, gamma regres-
sion and beta regression models, for instances, see Månsson (2011), Månsson (2013), 
Asar and Genç (2018), Cetinkaya and Kaciranlar (2019), Toker, Ustundağ and Qasim 
(2019), Qasim et al. (2020a, 2020b), Kibria, Månsson and Shukur (2013), Huang and 
Yang (2014), Kurtoglu and Ozkale (2016), Qasim, Amin and Amanullah (2018), Luk-
man et al. (2020), Amin, Qasim and Amanullah (2019), Amin et al. (2020a, 2020b), 
Karlsson, M˚ ˚ansson and Kibria (2020), Qasim, Mansson and Kibria (2021) among others. 

In this paper, we propose a new general biased estimator for Poisson regression 
model, which will be called the modifed almost unbiased two-parameter Poisson esti-
mator (MAUTPPE). The previous methods suggested by Månsson and Shukur (2011) 
and Shi et al. (2016) have disadvantages of inducing much bias. This is an unattractive 
property to applied researchers of these estimators and therefore, in this paper, we sug-
gest a bias correction that substantially reduces the bias and still solves the problem of 
multicollinearity. As an illustration of this new method, we model traffc fatality data 
of Sweden. We show a substantial increase of predictive power of this new method as 
compared to MLE and the standard ridge regression method. 
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The organization of the paper is as follows. The proposed estimator and its superi-
ority are given in Section 2. The estimation of the shrinkage parameters are outlined in 
Section 3. To compare the performance of the estimators, a simulation study has been 
conducted in Section 4. An application about the traffc fatalities in Sweden is given in 
Section 5. Finally some concluding remarks are given in Section 6. 

2.  Statistical  methodology  

2.1.  Maximum  likelihood  estimator  for  the  Poisson  regression  model  

The Poisson regression model is used when the dependent variable (yi) comes in the 
form of count data and distributed as P(µi) , where µi is a parameter of the Poisson 
distribution and it can be written as µi = exp(xiβ ) as mean response function for the 
Poisson regression model, where xi is the i-th row of X which is a n × (p + 1) data 
matrix with p explanatory variables and β is a (p + 1) × 1 vector of coeffcients. The 
traditional MLE is used to estimate β . The log likelihood of this model corresponds to: 

n n n 
L(β ;y) = ∑ exp(xiβ )+ ∑ yi log(exp(xiβ )) + log(∏yi!) (1) 

i=1 i=1 i=1 

Solving L(β ;y) with respect to β results in: 

n
∂ L 

= ∑(yi − exp(xiβ ))xi = 0
∂β i=1 

Now, we use the iteratively re-weighted least squares (IRLS) algorithm to get the MLE 
which can be written as follows: 

= (XT ˆβ̂ WZ = (S)−1XT ˆ (2)WX)−1XT ˆ WZ, 

ˆ ˆwhere S = XTWX , W = diag(µ̂i) and Z is the column vector with 

yi − µ̂iZi = log(µ̂i) 
µ̂i 

The MLE of β̂ is asymptotically unbiased estimator of β . When the explanatory vari-
ables are suffering for high correlation, the matrix S is ill-conditioned and the MLE be-
comes unstable with high variance. To solve this problem, Månsson and Shukur (2011) 
introduced the Poisson ridge estimator (PRE) as follows: 

β̂PRR = (S + kIp)
−1Sβ̂ ,k > 0 (3) 

Also, Månsson et al. (2012) and Qasim et al. (2019) proposed the Poisson Liu regression 
estimator (PLRE) as: 

β̂ (S + Ip)
−1(S + dIp)β̂PLE = 
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= [Ip − (1− d)(S + Ip)
−1]β̂ , 0 < d < 1 (4) 

In order to get an estimator that performs better than the PRE and PLRE, Asar and 
Genç (2018) proposed the following two-parameter Poisson estimator (TPPE) as: 

β̂TPE = Tk,d β̂ , k > 0, 0 < d < 1 (5) 

where Tk, d = (S + kIp)
−1(S + kdIp). 

2.2. The proposed estimator 

The TPPE (Asar and Genç, 2018) is the biased estimator and it has disadvantage of in-
ducing considerable bias. This is an unattractive property to applied researchers. There-
fore, in this section, we propose a bias correction that substantially reduces the bias and 
is more effcient than TPPE as well as improved estimators. The new estimator, which 
we called the modifed almost unbiased two-parameters Poisson estimator, denoted by 
β̂MAUTPPE and defned as follows: 

β̂MAUTPPE = Fk,d β̂ , k > 0, 0 < d < 1 (6) 

where Fk,d = [Ip − (1 − d)2(S + Ip)
−2](Ip + kS−1)−1 , 0 < d < 1,k > 0. 

The estimator in (6) is motivated from the following fact: The bias of β̂PLE in Eq. 
(4) is given as 

Bias(β̂PLE) = −(1− d)(S + Ip)
−1

β . 

Hence, by following Kadiyala (1984), the biased corrected of β̂PLE can be defned as 

β̃PLE = β̂PLE +(1 − d)(S + Ip)
−1

β̂ . 

Therefore, by following Ohtani (1986), we replace the β̂ by β̂PLE to get the almost 
unbiased PLRE, β̃PLE: 

β̃PLE = [Ip − (1− d)(S + Ip)
−1]β̂PLE 

= [Ip − (1− d)2(S + Ip)
−2](Ip + kS−1)−1

β̂ (7) 

Now, if we replace β̂ in Eq. (7) by β̂PRE from Eq. (3), we get the proposed estimator in 
Eq. (6). 

The properties of the MAUTPPE are obtained as follows: 

E(β̂MAUTPPE) = Fk, dβ 

The bias of the MAUTPPE: 

Bias(β̂MAUTPPE) = (Fk, d − Ip)β 
= [(Ip − (1 − d)2(S + Ip)

−2)(Ip + kS−1)−1 − Ip]β 
= = S−1{−k(S + Ip)

2 − S(1− d)2}(S + Ip)
−2(S + kIp)

−1Sβ 
∗ = B1. (8) 

The variance covariance matrix of the MAUTPPE is given as: 

Cov β̂MAUTPPE = Fk, dS−1Fk,d . (9) 
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2.3. Properties of the estimators 

We use the spectral decomposition in order to fnd the matrix mean square error (MMSE) 
and scalar mean squared error (SMSE). So, we can rewrite the matrix S as S = PΛPT , 
where P and Λ are the eigenvectors and eigenvalues of the matrix S, respectively, such 
that Λ = diag(λ1, . . . ,λp). Since MAUTPPE is the biased estimator, we have to use the 
MMSE as a criterion for goodness of ft where it is containing all relevant information 
regarding the estimators (such as, variance and biased). The MMSE of an estimator β̃ 

of β can be written as: 

MMSE(β̃ ) = E(β̃ − β )(β̃ − β )T 

= Var(β̃ )+(Bias(β̃ ))(Bias(β̃ ))T 

MMSE(β̂MAUTPPE) = P(Ip + kΛ
−1)−1(Ip − (1 − d)2(Λ + Ip)

−2) 
+ B1BT

Λ
−1(Ip − (1− d)2(Λ + Ip)

−2)(Ip + kΛ
−1)−1PT 

1,(10) 

where k and d are the biasing parameters and B1 = Bias(β̂MAUTPPE) = (Fk, d − Ip)α , 
where α = PT

β . 
If we take the trace of MMSE, then we get SMSE as follows: 

SMSE(β̃ ) = tr(MMSE(β̃ )) (11) 

So, � �2 2p (λ j + 1)2 − (1 − d)2 + α2 + λ j(1− d)2λ j k(λ j + 1)2 

MMSE(β̂MAUTPPE) = ∑ 
j=1 (λ j + k)2(λ j + 1)2 

(12) 
Asar and Genç (2018) computed the MMSE and SME of the TPPE as: 

+ B2BTMMSE(β̂TPE) = P(Λ + k)−1(Λ + kdIp)Λ
−1(Λ + kdIp)(Λ + k)−1PT 

2, 

p p α2(λ j + kd)2 
j (d − 1)2k2 

SMSE(β̂TPE) = ∑ + ∑
λ j(λ j + k)2 (λ j + k)2 

j=1 j=1 

where B2 = Bias(β̂TPE) = P(Λ + kIp)
−1α(d − 1)k. 

The MMSE and SMSE of the MLE are defned respectively as follows: 

= PΛ
−1PTMMSE(β̂ ) = S−1 . 

p 

∑ 
1

SMSE(β̂ ) = 
j=1 λ j 
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2.4. The performance of the proposed estimator 

2.4.1. The comparison between the MLE and MAUTPPE 

The comparison between MLE and MAUTPPE are illustrated using matrix mean squared 
error (MMSE): 

MMSE(β̂ ) = S−1 . 

MMSE(β̂MAUTPPE) = Fk,dS−1Fk,d + B1BT 
1, 

We state the following theorem to demonstrate the comparison between MLE and 
MAUTPPE. 

Theorem 2.1. Under MMSE criterion, the MAUTPPE (β̂MAUTPPE ) is superior to the 
MLE (β̂ ), namely, MMSE(β̂ ) − MMSE(β̂MAUTPPE) ≥ 0 if and only if: 

BT 
1[S

−1 − Fk, dS−1Fk,d ]
−1B1 ≤ 1 

Proof. The difference of MMSE values between MLE and MAUTPPE can be found as 

∆1 = MMSE(β̂ ) − MMSE(β̂MAUTPPE) = S−1 − (Fk, dS−1Fk, d + B1BT 
1) 

= D1 − B1BT 
1, 

where D1 = S−1 − Fk,dS−1Fk,d . 
Let D1 = PϒPT = Pdiag{γ1, . . . ,γp} PT by using the spectral decomposition, where 

ϒ = Λ−1 −(I+kΛ
−1)−1(I−(1−d)2(Λ+I)−2)Λ(−1)(I−(1−d)2(Λ+I)−2)(I+kΛ

−1)−1 . 

Therefore, 

−2 (1−d)2 (1−d)2k1− 1 + 1 − 
(λ j+1)2 1 − 

(λ j+1)2λ j 

γ j = , j = 1, . . . , p
λ j � 

(1−d)2 
�−2

kSince 2 < 1 and 1 + 
λ j 

< 1 for k > 0,0 < d < 1 and λ j > 0. Then
(λ j+1) 

−2 
k (1− d)2 (1− d)2 

1+ 1 − 1 − > 1;
λ j (λ j + 1)2 (λ j + 1)2 

and that means γ j > 0,∀ j. 
This implies that D1 is positive defnite Now, in order to fnd the conditions that 

make ∆1 is positive defnite, we have to introduce the Lemma 2.1: 

Lemma 2.1 (See Farebrother, 1976). Let M be a positive defnite matrix and α be a 
vector, then M − αα

T ≥ 0 if and only if αTM−1α ≤ 1. 

Therefore, by applying Lemma 2.1, the proof is completed. 
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2.4.2. The comparison between the TPPE and MAUTPPE estimators 

The properties of TPPE are obtained as follows: 

Bias(β̂TPPE) = k(d − 1)(S + kIp)
−1

β 

= B2 

and 

Cov(β̂TPPE) = Tk,dS−1Tk, d . 

The MMSE of TPPE is given as follows: 

MMSE(β̂TPPE) = Tk,dS−1Tk,d + B2BT 
2. (13) 

The following theorem is demonstrated the comparison between TPPE and MAUTPPE. 

Theorem 2.2. For 0 < d < 1 for fxed k, under Poisson regression model, the MAUTPPE 
β̂MAUTPPE is superior to TPPE β̂TPPE in the sense of MMSE if and only if 

BT 
1D−1B1 ≤ 1.2 

Proof. The difference of MMSE values between them can be given by: 

∆2 = MMSE(β̂TPPE) − MMSE(β̂MAUTPPE) 

= PD2PT + B2BT 
2 − B1BT 

1 
−2 (1 − d)2 (1 − d)2 pk

1 + 1 − 1 − 
(λ j + kd)2 λ j (λ j + 1)2 (λ j + 1)2 

PT + B2BT = Pdiag − 2 − B1BT 
1,

λ j(λ j + k)2 λ j 

j=1 

where 

D2 = (Λ + kIp)
−1(Λ + kd)Λ−1(Λ + kd)(Λ + kIp)

−1 

− (Ip − (1 − d)2(Λ + Ip)
−2)(I + kΛ

−1)−1
Λ
−1(Ip + kΛ

−1)−1 

(Ip − (1 − d)2(Λ + Ip)
−2) 

Since B2BT 
2 is nonnegative defnite, we focus upon the quantity 

−2 (1−d)2 (1−d)2k1+ 1 − 
(λ j+1)2 1− 

(λ j+1)2(λ j + kd)2 λ j 

λ j(λ j + k)2 − 
λ j 

for searching on the condition or conditions that make ∆2 is positive defnite. 
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Therefore, ∆2 is positive defnite if 
−2 

(λ j + kd)2 k (1 − d)2 (1 − d)2 
≥ 1 + 1− 1 − 

(λ j + k)2 λ j (λ j + 1)2 (λ j + 1)2 

Let k be fxed, then after some simplifcations for the above expression, we get: 

(1 − d)2 +(λ + 1)−2 k
d ≥ 0

λ j 

Since 0 < d < 1 , k > 0 and λ j > 0 , the above inequality is hold and after applying 
Lemma 2.1, the proof is completed. 

Also, we can state the following theorem: 

Theorem 2.3. For k > 0 and let d be fxed, under Poisson regression model, the MAUTPPE 
is superior to TPPE in the MMSE if and only if 

BT 
1D−1 

2 B1 ≤ 1. 

Proof. Same proof of Theorem 2.2. 
Since the proposed estimator depends on the unknown parameters, d and k, we dis-

cuss their estimation techniques in the section follow. 

3. New estimating methods for selection of k and d 

It is a complicated challenge for practitioners to choose an appropriate value of k and 
d. Based on the work of Hoerl and Kennard (1970a), Alkhamisi et al. (2006), Kibria 
(2003), we propose some estimation methods for the selection of k and d. 

Asar and Genç (2018) provided optimal values of k and d. Now, we derive the opti-
mal value of k by taking derivative of SMSE(β̂MAUTPPE) with respect to k and equating 
the resulting function to zero and solve for k. The procedure of estimating the optimal 
value is stated as: n o 

∂ SMSE(β̂MAUTPPE) p 2α2 
j 
� 

k(λ j + 1)2 +(1 − d)2λ j 
= ∑

∂ k j=1 (λ j + 1)2(λ j + k)2 

n o 
p 2 α2 

j ((λ j + 1)2k +(1 − d)2λ j)
2 + λ j((λ j + 1)2 − (1 − d)2)2 

− ∑ (λ j + 1)4(λ j + k)3 
j=1 

Equating the above equation to zero and solve for k: n o 
λ j 

2 + 2− α2 
j (1− d)2 λ j − d2 + 2d 

k j = ,∀ j = 1,2, . . . , p.
α2 

j (λ j + 1)2 
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Since the parameter k is positive, therefore, we suggest to apply absolute | . | as 

k̂ j =| k j | 

. We propose the following new estimating methods for choosing the value of k based 
on the work of Hoerl and Kennard (1970a), Alkhamisi et al., (2006) and Kibria (2003). 

k̂1 = min(| k j |). 

k̂2 = max(| k j |). 

k̂3 = mean(| k j |). 

k̂1 = median(| k j |). 

In addition, we derive the optimal value of d by taking derivative of β̂MAUTPPE with 
respect to d and equating the resulting function to zero and solve for d: � �� �1/2 

(kλ j)
1/2 α2 α2 2 + α2 2 

j λ j + α2 
j j λ j + 1 j λ j + 1 

d j = 
α2 2 + 1j λ j 

Since the value of d j is limited between 0 and 1, therefore, we should use following 
estimating methods with min operator to get the value of d j as follows: 

ˆ 2 2α j λ j + 1 
d̂ j = � �� , (14)�1/2

ˆλ j)1/2 ˆ 2 ˆ 2 ˆ 2 2 + 1 ˆ 2 2 + 1(k α j λ j + α j α j λ j + α j λ j 

where λ j > 0 ,α2 
j > 0 and k̂ > 0 which implies that the value of estimator d̂ is between 

0 and 1. 
Now, we use the following algorithm to estimate parameters k and d. 

1. Since k̂1 − k̂4 needs an initial value of d, we start by setting d equals some number 
between 0 and 1 and obtain k̂. 

2. By using Eq. (14), we estimate parameter d by plugging-in the value of k found 
in the frst step. 

3. In order to get a suitable value of k̂, we use one of the k̂1 − k̂4 estimators by 
plugging-in the value of d̂  found in the second step. 

4. Finally, to choose the best estimate of the parameter d using one of the k̂1 − k̂4 

from step 3 in Eq. (14) and then compute the d̂  estimator. 
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4. A Simulation Study 

In this section, we study the performance of the estimators using Monte Carlo simula-
tion under different factors such as degrees of multicollinearity, different values of the 
shrinkage parameter d and number of explanatory variables. Different parameters are 
used with some specifed value, illustrated in Table 1. 

4.1. The design of an experiment 

Following is the design of an experiment for the Poisson regression model: 

1. The correlated explanatory variables are generated by considering the work of 
McDonald and Galarneau (1975). 

xi j = (1 − ρ2)0.50wi j + ρwip+1 ; j = 1, ..., p; i = 1, . . . ,n, (15) 

where wi j are the independent standard normal pseudo-random numbers, ρ is 
quantifed correlation between any two explanatory variables is stated as ρ2 and 
xi j is the number of explanatory variables. After generated correlated explanatory 
variables, we standardized these variables using length scaling. 

2. The response variable, Yi(i = 1, . . . ,n) are generated from the Poisson distribution 
Po(µi) : 

Yi ∼ Po(µi), 

where 

µi = E(Yi) = exp(β0 + β1xi1 + ... + βpxip); j = 1,2, ..., p + 1. 

3. The parameter vectors corresponding to p = 3, p = 6 and p = 9 are selected by 
imposing the restriction on the coeffcients β1,β2, ...,βp as normalized eigenvec-

2tors corresponding to the largest eigenvalues of the matrix XTX so that ∑p
j=1 β j = 1 

(see for more details; Kibria, 2003). 

4. We use different estimators that given in Eq. (3) , (5) and (6) in this experiment. 
The βdTPE is estimated with the best shrinkage parameter " # 

kmax = max 
λ j 

,
λ j(1 − d)α2 

j − d 
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and it was suggested by Asar and Genç (2018). For β̂MAUTPPE, we propose an 
algorithm for choosing values of the shrinkage parameters k and d. In addition, 
we consider initial value of d which are 0.10, 0.50 and 0.99. These values are 
chosen due to 0 < d < 1 (e.g. see, Asar, Erişoğlu and Arashi, 2017). 

5. In order to investigate the performance of the proposed estimators, we use MSE 
and bias. h i 

∑
5000 (β̂ 

r − β )T(β̂ 
r=1 r − β ) 

MSE(β̂ ) = . (16)
5000 

∑
5000 | E(β̂ 

r) − β |r=1Bias(β̂ ) = , (17)
5000 

where β̂ 
r is the estimated value of any estimator. 

Table 1. Factors, notations and values are used in the simulation. 

Factors Notations Values 
Multicollinearity 
Number of explanatory variables 
Initial value of shrinkage parameter 
Sample size 
Number of Replications 

ρ2 

p 
d 
n 
R 

0.85, 0.90, 0.95, 0.99 
3, 6, 9 
0.10, 0.50, 0.90 
25, 50, 100, 150, 200, 500 
5000 

4.2. Results and Discussion 

The estimated MSE and bias of the estimators are computed under different effective pa-
rameters such as sample size (n), degrees of correlation (ρ2), initial value of the shrink-
age parameter (d) and number of explanatory variables (p) and summarized them in 
Tables 2 to 5. All together, we created six simulation tables where we analyze the per-
formance of MLE, TPPE and MAUTPPE by assuming different initial value of d which 
are 0.10, 0.50 and 0.99 (e.g. see for more details, Asar et al., 2017). To summarize the 
results and reduce the length of the paper, four representative tables (2-5) are included in 
the study. From the simulation results, it is perceived that proposed estimator MAUTPPE 
has the best performance as compared to the MLE and TPPE in sense of smaller MSE 
and bias. The MSE and bias of the MAUTPPE with (d̂, k̂2)is minimized as compared to 
other shrinkage parameters (k̂1, k̂3 and k̂4). 



   

p2 

Table 2. Estimated MSE and bias of the estimators when p = 3. 

    Estimated MSE   Estimated Bias 

  
MLE TPPE 

MAUTPPE  
TPPE 

MAUTPPE 

 n                   

0.85 25 4.3700 3.6225 1.6484 1.5851 1.8466 3.0288  0.9101 0.6309 0.6387 0.6803 0.8034 

 50 4.0496 3.5229 1.3957 1.4171 1.6462 2.0619  0.8912 0.6065 0.5756 0.6081 0.7142 

 100 4.0184 3.3228 1.0442 1.2850 1.5154 2.0482  0.8686 0.4958 0.5541 0.5874 0.6465 

 150 3.8890 3.1757 1.0151 1.2524 1.4106 2.0450  0.8444 0.4898 0.5253 0.5469 0.6337 

 200 3.0153 2.0234 0.9514 0.8246 0.6644 0.1358  0.4607 0.4180 0.0182 0.3577 0.0750 

 500 0.0114 0.0094 0.0071 0.0117 0.0116 0.0109  0.0071 0.0045 0.0047 0.0042 0.0038 

0.90 25 4.4092 3.9826 1.7537 1.6586 2.2018 2.8577  0.9440 0.6548 0.6347 0.6954 0.7851 

 50 4.0614 3.9435 1.5955 1.6100 1.9665 2.4220  0.9195 0.6114 0.6201 0.6882 0.7501 

 100 4.0314 3.6039 1.4783 1.5610 1.9043 2.3502  0.9039 0.6066 0.6027 0.6506 0.7369 

 150 4.0044 3.4187 1.2395 1.4477 1.8472 2.2683  0.8891 0.5597 0.5921 0.6483 0.6963 

 200 3.8303 3.4145 1.2090 1.2460 1.4398 1.5617  0.8760 0.5489 0.5762 0.6040 0.6217 

 500 0.0179 0.0112 0.0081 0.0170 0.0176 0.0171  0.0061 0.0044 0.0042 0.0038 0.0036 

0.95 25 4.5039 3.9561 3.0520 1.8006 2.3236 3.0005  0.9703 0.7548 0.6258 0.6971 0.7840 

 50 4.1655 3.8989 2.4713 1.6244 2.0000 2.7034  0.9695 0.7485 0.6182 0.6758 0.7560 

 100 4.0666 3.8809 1.4129 1.5621 1.9589 2.6450  0.9651 0.5776 0.6161 0.6701 0.7466 

 150 4.0547 3.7768 1.3792 1.5208 1.9571 2.3203  0.9406 0.5661 0.5757 0.6301 0.7066 

 200 4.0317 3.5604 1.3585 1.5114 1.9229 2.2465  0.9067 0.5525 0.5592 0.6199 0.6848 

 500 0.0734 0.0335 0.0169 0.0375 0.0541 0.0643  0.0061 0.0036 0.0060 0.0041 0.0034 

0.99 25 5.5687 3.8433 3.7017 1.6010 1.9174 3.0569  1.0205 0.9152 0.6104 0.6565 0.8338 

 50 4.9333 3.7302 3.5376 1.4350 1.7870 2.6267  1.0127 0.9133 0.5784 0.6214 0.7447 

 100 4.2879 3.5995 3.3014 1.4221 1.7789 2.4104  0.9755 0.8361 0.5725 0.6148 0.7334 

 150 4.1000 3.5868 3.2060 1.4197 1.6664 2.4072  0.9561 0.8241 0.5710 0.6019 0.6612 

  200 3.9870 3.3639 3.0154 1.2841 1.5114 1.9330   0.9219 0.7374 0.5346 0.5821 0.6558 

 500 0.7039 0.2528 0.0122 0.0538 0.1486 0.4296  0.0043 0.0045 0.0075 0.0045 0.0033 



   

d = 0.10 d = 0.50 d = 0.99 

pz 

Table 3. Estimated MSE of the estimators when p = 6 under consider different values of d. 

           

  
MLE TPPE 

MAUTPPE  
TPPE 

MAUTPPE  
TPPE 

MAUTPPE 

 n                             

0.85 25 4.600 3.771 2.193 1.313 1.731 2.529  3.880 2.193 1.313 1.731 2.529  4.559 2.193 1.313 1.731 2.529 

 50 4.205 3.610 1.507 1.262 1.654 2.437  3.790 1.507 1.262 1.654 2.437  4.069 1.507 1.262 1.654 2.437 

 100 4.084 3.602 1.419 1.201 1.522 2.393  3.782 1.419 1.201 1.522 2.393  4.029 1.419 1.201 1.522 2.393 

 150 4.040 2.993 1.107 1.143 1.318 2.175  3.518 1.107 1.143 1.318 2.175  4.001 1.107 1.143 1.318 2.175 

 200 4.006 2.518 1.033 1.121 1.299 1.893  3.510 1.033 1.121 1.299 1.893  3.978 1.033 1.121 1.299 1.893 

 500 0.0071 0.0910 0.0071 0.0095 0.0077 0.0071  0.0357 0.0061 0.0069 0.0066 0.0065  0.0357 0.0061 0.0069 0.0066 0.0065 

0.90 25 5.135 3.997 2.628 1.339 1.739 3.127  3.882 2.628 1.339 1.739 3.127  4.894 2.628 1.339 1.739 3.127 

 50 4.213 3.677 1.936 1.254 1.596 2.671  3.868 1.936 1.254 1.596 2.671  4.805 1.936 1.254 1.596 2.671 

 100 4.096 3.451 1.756 1.206 1.466 2.566  3.733 1.756 1.206 1.466 2.566  4.797 1.756 1.206 1.466 2.566 

 150 4.044 3.326 1.254 1.193 1.462 2.484  3.713 1.254 1.193 1.462 2.484  4.208 1.254 1.193 1.462 2.484 

 200 4.003 2.744 1.065 1.126 1.408 2.165  3.656 1.065 1.126 1.408 2.165  3.997 1.065 1.126 1.408 2.165 

 500 0.0141 0.0181 0.0135 0.0133 0.0134 0.0136  0.0139 0.0069 0.0078 0.0077 0.0077  0.0139 0.0069 0.0078 0.0077 0.0077 

0.95 25 5.536 3.899 3.401 1.424 2.119 3.292  3.959 3.365 1.420 2.110 3.290  5.246 3.385 1.422 2.115 2.530 

 50 4.322 3.834 2.800 1.371 1.836 3.280  3.942 2.784 1.381 1.844 3.279  4.289 2.797 1.376 1.832 2.915 

 100 4.137 3.694 2.366 1.316 1.832 2.896  3.932 2.353 1.315 1.829 2.899  4.141 2.378 1.322 1.828 2.904 

 150 4.054 3.508 1.577 1.283 1.649 2.893  3.901 1.589 1.278 1.644 2.898  4.063 1.595 1.279 1.650 3.284 

 200 4.008 2.985 1.156 1.220 1.600 2.554  3.865 1.157 1.216 1.594 2.521  4.010 1.156 1.216 1.593 3.286 

 500 0.0606 0.0491 0.0598 0.0474 0.0541 0.0602  0.0234 0.0071 0.0105 0.0103 0.0103  0.0234 0.0071 0.0105 0.0103 0.0103 

0.99 25 9.054 3.917 5.368 1.606 2.109 3.675  5.244 5.331 1.603 2.101 3.669  8.290 5.416 1.607 2.107 3.667 

 50 4.993 3.900 3.873 1.525 2.105 3.628  4.195 3.879 1.510 2.083 3.641  4.931 3.882 1.520 2.099 3.633 

 100 4.541 3.845 3.836 1.374 2.039 3.606  4.084 3.836 1.370 2.025 3.601  4.498 3.839 1.369 2.029 3.611 

 150 4.228 3.767 2.765 1.364 1.904 3.594  4.037 2.743 1.367 1.916 3.558  4.217 2.766 1.364 1.906 3.596 

  200 4.082 3.619 2.573 1.241 1.762 3.560   3.976 2.565 1.237 1.754 3.539   4.074 2.572 1.241 1.763 3.556 

 500 0.0492 0.0353 0.0186 0.0315 0.0355 0.0391  0.0353 0.0186 0.0315 0.0355 0.0391  0.0353 0.0186 0.0315 0.0355 0.0391 



   

d = 0.10 d = 0.50 d = 0.99 

p2 

Table 4. Estimated bias of the estimators when p = 6 under consider different values of d. 

       

    
TPPE 

MAUTPPE   
TPPE 

MAUTPPE   
TPPE 

MAUTPPE 

 n                             

0.85 25 0.759 0.592 0.459 0.515 0.607  0.782 0.592 0.459 0.515 0.607  0.880 0.592 0.459 0.515 0.607 

 50 0.751 0.483 0.454 0.497 0.600  0.778 0.483 0.454 0.497 0.600  0.817 0.483 0.454 0.497 0.600 

 100 0.742 0.480 0.446 0.485 0.585  0.774 0.480 0.446 0.485 0.585  0.813 0.480 0.446 0.485 0.585 

 150 0.687 0.428 0.442 0.479 0.578  0.772 0.428 0.442 0.479 0.578  0.809 0.428 0.442 0.479 0.578 

 200 0.646 0.415 0.440 0.466 0.557  0.765 0.415 0.440 0.466 0.557  0.799 0.415 0.440 0.466 0.557 

 500 0.0694 0.0070 0.0095 0.0077 0.0070  0.0310 0.0081 0.0077 0.0073 0.0071  0.0310 0.0081 0.0077 0.0073 0.0071 

0.90 25 0.798 0.642 0.463 0.516 0.674  0.789 0.642 0.463 0.516 0.674  0.890 0.642 0.463 0.516 0.674 

 50 0.757 0.530 0.462 0.503 0.628  0.782 0.530 0.462 0.503 0.628  0.838 0.530 0.462 0.503 0.628 

 100 0.723 0.525 0.457 0.497 0.621  0.780 0.525 0.457 0.497 0.621  0.820 0.525 0.457 0.497 0.621 

 150 0.713 0.449 0.431 0.470 0.592  0.778 0.449 0.431 0.470 0.592  0.806 0.449 0.431 0.470 0.592 

 200 0.670 0.422 0.429 0.467 0.590  0.758 0.422 0.429 0.467 0.590  0.798 0.422 0.391 0.467 0.590 

 500 0.0163 0.0065 0.0068 0.0066 0.0065  0.0055 0.0023 0.0024 0.0023 0.0023  0.0055 0.0023 0.0024 0.0023 0.0023 

0.95 25 0.779 0.718 0.479 0.568 0.696  0.794 0.715 0.478 0.567 0.695  0.890 0.717 0.479 0.567 0.696 

 50 0.777 0.628 0.475 0.530 0.691  0.794 0.627 0.475 0.531 0.692  0.835 0.628 0.476 0.530 0.692 

 100 0.741 0.593 0.471 0.526 0.656  0.789 0.592 0.472 0.526 0.656  0.813 0.595 0.471 0.525 0.658 

 150 0.738 0.492 0.452 0.519 0.639  0.787 0.493 0.451 0.518 0.639  0.803 0.494 0.451 0.519 0.640 

 200 0.692 0.439 0.436 0.488 0.635  0.773 0.439 0.436 0.487 0.631  0.799 0.439 0.436 0.487 0.632 

 500 0.0360 0.0068 0.0105 0.0083 0.0068  0.0183 0.0073 0.0066 0.0061 0.0059  0.0183 0.0073 0.0066 0.0061 0.0059 

0.99 25 0.783 0.844 0.510 0.573 0.753  0.811 0.841 0.509 0.572 0.749  0.880 0.846 0.510 0.573 0.755 

 50 0.778 0.773 0.487 0.559 0.741  0.797 0.774 0.485 0.556 0.740  0.827 0.775 0.486 0.558 0.742 

 100 0.763 0.761 0.463 0.550 0.741  0.794 0.761 0.462 0.548 0.740  0.809 0.762 0.463 0.548 0.740 

 150 0.763 0.634 0.461 0.530 0.734  0.788 0.631 0.462 0.531 0.735  0.802 0.634 0.461 0.530 0.735 

  200 0.745 0.619 0.453 0.525 0.729   0.782 0.618 0.453 0.524 0.729   0.798 0.619 0.453 0.525 0.729 

 500 0.0279 0.0055 0.0075 0.0063 0.0057  0.0279 0.0055 0.0075 0.0063 0.0057  0.0279 0.0055 0.0075 0.0063 0.0057 



   

µ2 

Table 5. Estimated MSE and bias of the estimators when p = 9. 

    Estimated MSE   Estimated Bias 

  
MLE TPPE 

MAUTPPE  
TPPE 

MAUTPPE 

 n                   

0.85 25 4.9867 3.9254 3.3671 1.2180 1.6399 3.7194  0.6837 0.6095 0.3820 0.4310 0.6537 

 50 4.4573 3.8356 1.6960 1.1597 1.5815 3.5295  0.6735 0.4555 0.3808 0.4290 0.6320 

 100 4.1008 3.5133 1.5471 1.1421 1.5178 3.1586  0.6383 0.4285 0.3775 0.4221 0.5877 

 150 4.0432 3.3801 1.3994 1.1229 1.5028 2.7216  0.6138 0.4080 0.3724 0.4204 0.5519 

 200 4.0187 2.7509 1.3574 1.0992 1.3052 2.1693  0.5777 0.4034 0.3688 0.4087 0.5087 

 500 0.0157 0.0130 0.0121 0.0159 0.0160 0.0145  0.0189 0.0151 0.0154 0.0153 0.0147 

0.90 25 5.1892 3.8377 3.6209 1.2633 1.7033 3.4648  0.6238 0.6320 0.3792 0.4333 0.6107 

 50 4.2100 3.7621 2.6786 1.2155 1.6710 3.4088  0.6521 0.5576 0.3870 0.4411 0.6248 

 100 4.1743 3.6540 1.7841 1.2143 1.6565 3.3917  0.6500 0.4694 0.4043 0.4586 0.5801 

 150 4.0396 3.5072 1.6078 1.1832 1.6184 3.0263  0.6710 0.4380 0.3754 0.4338 0.6278 

 200 4.0243 3.4173 1.1155 1.1415 1.5880 2.8179  0.6613 0.3694 0.3824 0.4362 0.5802 

 500 0.0240 0.0163 0.0087 0.0234 0.0238 0.0208  0.0051 0.0052 0.0054 0.0054 0.0053 

0.95 25 5.9292 3.9792 4.1619 1.3290 2.2126 3.8283  0.6920 0.6726 0.4023 0.5082 0.6664 

 50 4.1767 3.8952 2.3592 1.3283 1.9382 3.6988  0.6786 0.5121 0.3945 0.4637 0.6503 

 100 4.1462 3.7097 2.1484 1.2887 1.8386 3.6626  0.6576 0.5014 0.3942 0.4592 0.6375 

 150 4.0412 3.7050 2.1469 1.1858 1.6857 3.4699  0.6423 0.4952 0.3781 0.4410 0.6182 

 200 4.0278 3.6487 2.1459 1.1145 1.4582 3.2969  0.6413 0.4951 0.3671 0.4106 0.6094 

 500 0.1204 0.0599 0.0185 0.0828 0.0960 0.0808  0.0203 0.0164 0.0252 0.0200 0.0143 

0.99 25 78.7139 78.7125 9.3212 1.9733 2.7194 78.4760  0.9057 0.6977 0.4703 0.5470 0.9037 

 50 11.8039 4.0722 5.4770 1.3071 1.9804 3.9385  0.6820 0.6891 0.4045 0.4825 0.6748 

 100 5.6412 3.9143 4.3348 1.2536 1.9150 3.8780  0.6812 0.6647 0.3895 0.4693 0.6699 

 150 4.3063 3.9019 3.8198 1.1253 1.5446 3.8354  0.6689 0.6526 0.3716 0.4268 0.6673 

  200 4.0859 3.8468 3.6952 1.0334 1.5223 3.7788   0.6641 0.0491 0.3449 0.2861 0.6609 

 500 0.9683 0.4018 0.0077 0.1194 0.2088 0.1181  0.0067 0.0058 0.0080 0.0063 0.0052 
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Table 6. Estimated Coeffcients and SMSE of the MLE, TPPE and MAUTPPE. 

Estimators MLE TPPE 

MAUTPPE 

 [1] 

    

Intercept 2.240 2.254 2.291 2.295 2.290 2.288 2010 

Unemployment 0.075 0.067 0.051 0.046 0.045 0.045 223.2 

Cars -9.559 -6.799 -0.062 -0.282 -0.647 -0.875 186.54 

Trucks 4.018 3.123 0.669 1.072 1.446 1.566 14.157 

15-24 years 1.971 1.460 0.042 0.209 0.464 0.560 0.581 

25-64 years 2.004 1.424 -0.030 0.101 0.202 0.242 0.224 

> 64 years 1.979 1.185 -0.280 -0.755 -1.113 -1.138 0.047 

MSE 27.749 14.969 8.699 7.520 6.390 6.059  

[1] ( ) are the eigenvalues and Condition Index = = 207.77   

Increasing the degree of correlation has an adverse effect on the estimators in terms 
of MSE. However, the estimated bias of the estimators are decreasing when the degrees 
of correlation is increased particular especially for MAUTPPE with k̂2 and k̂3. When 
the sample size increases the estimated MSE and bias are decreased. The sample size 
makes a good effect on the estimators in sense of large sample size. An increase in 
the number of explanatory variables has a negative effect in sense of estimated MSE 
and positive effect in sense of estimated bias for some cases. The estimated bias of the 
TPPE is reduced when the number of explanatory variables are increased. However, the 
proposed MAUTPPE has lowest bias in all cases than the TPPE. It is also noted that the 
estimated bias of all the estimators are reduced when the p = 6 and then slight increase 
in the estimated bias when p = 9 and ρ2 = 0.99 for only TPPE and MAUTPPE (d̂, k̂4). 
The performance of MAUTPPE (d̂, k̂2) is signifcant in terms of estimated MSE and 
MAUTPPE (d̂, k̂1)is almost unbiased when the ρ2 = 0.99,n = 200 and p = 9. 

In addition, we analyzed the performance of TPPE and MAUTPPE by assuming 
different initial value of d which are 0.10, 0.50 and 0.99 (e.g. see for more details, Asar 
et al., 2017). These results are illustrated in Tables 3-4. The performance of TPPE and 
MAUTPPE do not change substantially when we consider the different initial values of 
d and one can see this fndings in Table 3 and Table 4. The estimated MSE and bias 
values of the MAUTPPE are approximately same when the ρ2 = 0.85 and ρ2 = 0.90. 
One can see the insignifcant change in the estimated MSE and bias of the MAUTPPE 
when the ρ2 = 0.95 and ρ2 = 0.99. Meanwhile, the estimated MSE and bias values of 
the TPPE are increased when the d rises. The performance of TPPE is near to MLE 
when the d = 0.99, ρ2 = 0.99 and n = 200. For large sample size (n = 500), the bias of 
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MAUTPPE is close to zero which indicate the beneft of the proposed estimator in the 
sense of bias correction. Simulation results demonstrate that a bias correction estimator 
(MAUTPPE) substantially reduces the bias and more effcient than TPPE as well as 
improved estimators under certain conditions. 

We can conclude that the performance of MLE is worsted in almost all condi-
tion. The MLE is not good choice in the presence of multicollinearity. The proposed 
MAUTPPE has quite good performance as compared to the TPPE and MLE under dif-
ferent conditions. However, the MAUTPPE with (d̂, k̂2) has better performance than the 
other estimators in almost all conditions. 

Figure 1. Emperical estimated SMSE of MLE, TPPE and MAUTPPE. 

5. Application 

To illustrate the fndings of the paper, Swedish traffc fatality data for the year 2019 are 
analyzed in this section. The data are taken from the Statistics Sweden and Swedish 
transport administration. The aim of this case study is to see the impact of external fac-
tors on the traffc fatalities in Sweden, where the number of traffc fatalities is considered 
as dependent variable. As discussed by Wiklund, Simonsson and Forsman (2012), the 
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main factors are economic conditions defned as unemployment rate, traffc exposure 
that we measure as number of vehicles (cars and trucks), and demographic variables, all 
of which are considered as explanatory variables. By following the study of Stipdonk et 
al., (2013), we divide all individuals into three different age groups (age 15-24 years, age 
25-64 years and more than 64 years). The estimated results of the model are presented 
in Table 6. The eigenvalues of XTX matrix are 2010, 223.2, 186.54, 14.157, 0.581, 0.224q

λmaxand 0.047. The condition index, CI = = 207.77 , which confrmed that there
λmin 

are serious problems of multicollinearity. Therefore, we used TPPE and MAUTPPE 
to combat the multicollinearity problem. The unemployment rate coeffcient is positive 
which shows that the number of fatalities increases and this impact is considerable low 
for MAUTPPE (d̂, k̂4). The traffc exposure variables (cars and trucks) have negative and 
positive coeffcients. This shows that more accidents occur when trucks are used and less 
accidents occur when cars are used. Age group 15-24 and 25-64 year’s parameters are 
positive except MAUTPPE (d̂, k̂1). Age group more than 64 years is positive when we 
use MLE and TPPE but it is negative for MAUTPPE which shows the robust results. The 
number of fatalities decreases when the drivers have more experience and this result can 
be seen only by using proposed estimator (MAUTPPE). The SMSE of MLE is infated 
due to multicollinearity problem and biased estimation methods (TPPE and MAUTPPE) 
have lower SMSE than the MLE. One can see that a substantial decrease of the SMSE 
when applying MAUTPPE than the MLE and TPPE. Figure 1 illustrates the empirical 
SMSE of MLE, TPPE and MAUTPPE. The SMSE of MAUTPPE is smaller than the 
MLE and TPPE. In summary, the application shows the benefts of the proposed estima-
tor. Program code in R for analyzing this application data set is given in Supplementary 
Material. 

6. Some concluding Remarks 

This paper proposes a new almost unbiased estimator for the parameters of the Poisson 
regression model. The MSE properties of the proposed estimator is investigated and a 
comparison is made with some existing estimators. Furthermore, a simulation study has 
been conducted to compare the performance of the estimators under several parametric 
conditions. Finally, an example illustrates the beneft of the new MAUTPPE. The overall 
results of the paper show the beneft of the new estimator as compared to previously 
suggested estimators such as TPPE and MLE. Based on both the simulation study and 
empirical application, we may recommend MAUTPPE with parameter combinations 
(d̂, k̂2) and (d̂, k̂4) to researchers. 
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Qasim, M., Månsson, K., and Kibria, B. M. G. (2021). On some beta ridge regression 
estimators: method, simulation and application. Journal of Statistical Computation 
and Simulation, 1-14. 
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